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Abstract

Empirical likelihood (EL) is a nonparametric likelihood approach for parame-

ter estimation and hypothesis testing. A desirable feature of the EL method is

that it allows Bartlett correction, which is a simple statistical adjustment on

the test statistic to construct confidence regions with improved coverage accu-

racies. Previous studies have demonstrated the Bartlett correctability of EL

for independent and identically distributed data and Gaussian short-memory

time series. However, it is still unknown whether EL is Bartlett correctable

for long-memory or non-Gaussian distributed time series. In this thesis, we

establish the validity of the Edgeworth expansion for the signed root empirical

log-likelihood ratio statistic to prove that EL is Bartlett correctable for Gaus-

sian long-memory and non-Gaussian short-memory time series. For Gaussian

long-memory time series, the Edgeworth expansion admits an irregular form

with a power series of order log3 n/
√
n. Based on the expansion, the cov-

erage error of the EL confidence region can be reduced from O(log6 n/n) to

O(log3 n/n). For non-Gaussian short-memory time series, by carefully calcu-

lating the higher-order cumulants of the signed root empirical log-likelihood

ratio statistic, the valid Edgeworth expansion can be established as a power

series of order O(n−1/2). Based on the expansion, the coverage error of the EL

confidence region can be reduced from O(n−1) to O(n−2) using the Bartlett

correction technique.
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摘要 

经验似然是一种做参数估计和假设检验的非参似然方法。经验似然的一个非常好

的性质是巴特莱特纠正性。巴特莱特纠正性是对检验函数做一个简单的调整，使之建

立的置信区域拥有更好的覆盖概率。以前的研究证明了对于独立同分布的数据和高斯

分布的短记忆时间序列，经验似然可以被巴特莱特纠正。但是，对长记忆或非高斯分

布的时间序列数据，经验似然是否拥有巴特莱特纠正性仍然未知。在这篇论文里，通

过建立经验似然比平方根统计量的埃奇沃思展开表达式，我们建立了对高斯长记忆时

间序列数据和非高斯短记忆时间序列数据，经验似然方法的巴特莱特纠正性。对于高

斯长记忆时间序列，经验似然比平方根的埃奇沃思展开式是 log3n/√n的幂级数。根据

这个展开式，巴特莱特纠正方法使得经验似然置信区间的误差阶由 Oሺlog6n/nሻ	减少到

Oሺlog3n/nሻ。对于非高斯短记忆时间序列数据，我们必须考虑离散傅里叶变换的高阶

累积量。对于非高斯时间序列数据，通过计算经验似然比单位根统计量的高阶累积量，

埃奇沃思展开式是nିଵ/ଶ 的幂级数。根据这个展开式，巴特莱特纠正方法使得经验似然

置信区域的误差阶由Oሺnିଵሻ 减少到Oሺnିଶሻ。 
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Chapter 1

Introduction

Empirical likelihood (EL) is a nonparametric likelihood approach for statis-

tical inference introduced by Owen (1988, 1990, 2001). The EL function is

formulated by appointing each observed datum with a given probability and

maximizing the product probability under some constraints. One key prop-

erty of the EL method for independent and identically distributed (i.i.d.) data

is called “self-studentization” (see Hall and La Scala (1990)), meaning that

the EL function automatically converges to a chi-squared distributed random

variable without assuming any joint distribution of the data. Based on the

chi-squared limiting distribution, confidence regions and hypothesis tests can

be performed easily. Compared to other nonparametric methods such as Boot-

strap, the EL method is an attractive alternative as it does not require resam-

pling.

Most of the literature has shown that the EL method performs well in a

variety of settings. By incorporating different constraints, the EL method,

for i.i.d. data, has been extended to make inferences on estimating equations,

linear regressions, and quantiles of distribution (see, for example, Qin and

Lawless (1994), Owen (1991), Chen (1993)). Recently, many authors (see, for

example, Hjort et al. (2009), Chen et al. (2009)) have investigated the EL

method’s performance in high-dimensional settings. The EL method has also

been extended to accommodate serial correlation. Kitamura (1997) studied

1
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the blockwise EL method for weakly dependent time series. Chuang and Chan

(2002) used the EL method with martingale estimating equations for unsta-

ble autoregressive models. Monti (1997) used a periodoram-based estimating

function to apply the EL method formulated by Qin and Lawless (1994) to

stationary short-memory time series (SMTS). It was later extended for use

in a general setting with both SMTS and long-memory time series (LMTS)

by Nordman and Lahiri (2006). For Gaussian SMTS, the periodogram or-

dinates are asymptotically independent (see Brillinger (1981)), such that the

periodogram-based estimating functions are asymptotically independent. By

mimicking independence of the estimating functions, the EL method also ad-

mits the “self-studentization” property of the time series.

Various approaches have been proposed to improve the accuracy of EL

methods. Bartlett correction is one of the popular improvement techniques. It

is a second-order improvement method that adjusts the empirical log-likelihood

ratio statistic using a simple factor. Hall and La Scala (1990) demonstrated

the Bartlett correction for EL inference on population mean, and Bartlett

correction for smooth functions of means is established by DiCiccio, Hall and

Romano (1991). Chen and Cui (2007) studied the Bartlett correctability of

EL with over-identified estimating equations (i.e., the number of estimating

functions is larger than that of parameters) in econometrics.

Nevertheless, the establishment of Bartlett correction for time series has

received little consideration. Chan and Liu (2010) first developed Bartlett

correction for Gaussian SMTS. However, in practice, many time series do not

follow Gaussian distribution; in fact, some may even exhibit long-range depen-

dence. In this thesis, we establish the Bartlett correctability of the EL method

for Gaussian LMTS models and non-Gaussian SMTS models.

For Gaussian LMTS, the main problem is that the periodogram ordi-

nates near the origin are no longer asymptotically independent (see, for exam-

ple, Hurvich and Beltrao (1993), Robinson (1995)). Given this problem, the
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periodogram-based EL may fail to be Bartlett correctable. Specifically, the de-

pendence introduces a bias of order O(log3 n/n) for Gaussian LMTS, instead

of order O(n−1) for Gaussian SMTS. To tackle this, we establish an irregular

Edgeworth expansion for the signed root empirical log-likelihood ratio func-

tion with a power series of log3 n/
√
n. Based on such expansion, the coverage

error of the Bartlett corrected EL can be reduced from order O(log6 n/n) to

O(log3 n/n).

It is well known that the higher-order cumulants of periodogram ordi-

nates can be decomposed into products with the higher-order cumulants of

the discrete Fourier transform (DFT), which are negligible for Gaussian pro-

cesses (see, for example, Brillinger (1981), Priestley (1981)). For non-Gaussian

SMTS, the main problem is that the higher order cumulants of DFT are

no longer negligible. Thus, the periodogram-based EL method may fail to

be Bartlett correctable. We show that for a stationary linear non-Gaussian

SMTS, the cumulants of DFT with an even order larger than four or an odd

order decay to zero with sufficiently small rates, and thus can be neglected.

Therefore, only the fourth-order cumulant of the DFT requires consideration.

Surprisingly, some calculations reveal that the non-negligible fourth-order cu-

mulant can be canceled in the third-and the fourth-order cumulants of the

signed root decomposition. This property ensures that the Edgeworth expan-

sion is a power series of order n−1/2. Based on the expansion, the coverage

error of the EL confidence interval can still be reduced from O(n−1) to O(n−2)

by Bartlett correction. We also conduct simulation studies to demonstrate

the effectiveness of the periodogram-based EL calibration method when the

underlying process exhibits both short- and long-range dependence, possibly

non-Gaussian distributed.

In Chapter 2, we begin with a basic setting comprising EL with i.i.d. data

to infer from the population mean, the smooth functions of means, and the

parameters described by generalized estimating equations. Then, we review
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the EL method with dependent data.

In Chapter 3, we review the Bartlett correction for the EL method. We

introduce some fundamental tools such as signed root empirical log-likelihood

ratio statistic and the Edgeworth expansion technique, which are required to

prove Bartlett correction. Establishing the validity of the Edgeworth expan-

sion for the probability density function (p.d.f.) of the signed root empirical

log-likelihood ratio statistic allows us to evaluate the coverage errors of EL

confidence regions. The coverage errors of Bartlett-corrected EL confidence

regions can also be derived using a similar procedure.

In Chapter 4, we use the periodogram-based EL for Gaussian LMTS to

establish the valid Edgeworth expansion for the p.d.f. of the signed root em-

pirical log-likelihood ratio statistic and its Bartlett corrected counterpart. This

exploration provides some tools for further development on Bartlett correction

with non-Gaussian time series.

In Chapter 5, we evaluate the higher-order cumulants of the DFT for non-

Gaussian time series are non-negligible to establish a valid Edgeworth expan-

sion for the signed root empirical log-likelihood ratio statistic. We show that

the existence of higher-order cumulants of the DFT does not affect the Bartlett

correctability of EL for non-Gaussian SMTS.

Chapter 6 concludes and explores possible future research areas.
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Chapter 2

Empirical Likelihood

Background

The empirical likelihood (EL) method is a nonparametric likelihood-based

method applicable to versatile areas of statistics and econometrics. The idea

of EL originated from Thomas and Prentice’s (1980) work in survival analysis,

and the formal methodology was developed by Owen (1988, 1990 and 1991). In

this chapter, we review the EL approach for both independent and dependent

data.

2.1 Empirical Likelihood for Independent Data

The EL method can be viewed as an extension of the parametric likelihood

method in a nonparametric setting. Assume that X1, X2, . . . , Xn are Rd inde-

pendent and identically distributed (i.i.d.) random vectors with a known non-

singular covariance matrix Var(Xi). We consider constructing a confidence

region for the unknown population mean E(Xi) = µ ∈ Rd. If Xi follows a dis-

tribution with a probability density function (p.d.f.) of f(x;µ), the parametric

likelihood ratio statistic for testing the null hypothesis H0 : µ = µ0 ∈ Rk,

k < d, versus H1 : µ 6= µ0 is given by

L(µ0)

maxµ L(µ)
,

5
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where L(µ) =
∏n

i=1 f(Xi, µ) is the likelihood function for the mean. If the

likelihood ratio function is small, the null hypothesis is rejected. Let l(µ) =

logL(µ) be the log-likelihood function, and the log-likelihood ratio test statistic

is defined by

LR(µ0) = 2{l(µ̂)− l(µ0)},

where µ̂ = argmaxµ l(µ) is the unconstrained maximum likelihood estimator

(MLE). The parametric Wilks’s theorem (see, Wilks (1938)) states that

LR(µ0) = 2{l(µ̂)− l(µ0)} ⇒ χ2
d−k, as n→∞, (2.1)

where χ2
d is a chi-squared distributed random variable with degrees of freedom

d. Therefore, the threshold to reject µ0 can be found from the critical value of

χ2
d.

The EL method replaces L(µ) with the nonparametric likelihood function

supported by the observed data. Assume that Xi follows a common cumu-

lative distribution function (c.d.f.) F (x) = P (X ≤ x) =
∑n

i=1 pi1{Xi≤x} and

F (x−) = P (X < x) =
∑n

i=1 pi1{Xi<x}, where 1{·} denotes the indicator func-

tion. Assigning a probability pi to each point Xi, such that
∑n

i=1 pi = 1, the

nonparametric likelihood function is given by

L(F ) =
n∏
i=1

(F (Xi)− F (Xi−)) =
n∏
i=1

pi,

which is maximized when F is the empirical c.d.f., Fn(x) = 1
n

∑n
i=1 1{Xi≤x} (i.e.,

pi = n−1). Analog to LR(µ0), the nonparametric likelihood ratio function is

defined by
L(F )

L(Fn)
=

n∏
i=1

npi.

The EL ratio function incorporates the information from the mean by the

constrained maximization,

Rn(µ) = max
pi

{
n∏
i=1

npi |
n∑
i=1

pi(Xi − µ) = 0d,
n∑
i=1

pi = 1, pi ≥ 0

}
,
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where 0d is the d-dimensional zero vector. Clearly, analogous to the parametric

likelihood ratio test, the small values of Rn(µ) reject the null hypothesis.

Analogous to (2.1), Owen (1988, 1990) proved the nonparametric Wilks’s

theorem for the empirical log-likelihood (log-EL) ratio function −2 logR(µ0)

at the true value µ0. That is,

−2 logRn(µ0)⇒ χ2
d, as n→∞. (2.2)

Based on (2.2), the approximate confidence region for the mean at a confidence

level 100(1− α)% is given by

In,1−α =
{
µ | −2 logRn(µ) ≤ χ2

d,1−α
}
,

where χ2
d,1−α is the upper α critical value of χ2

d.

For example, the left plot of Figure 2.1 shows the empirical distribution of

the simulated random variable following univariate standard normal distribu-

tion N(0, 1), with a sample size of n = 200. The right plot of Figure 2.1 shows

the log-EL ratio statistic at various mean values. The horizontal line shows

the threshold with a value of χ2
1,0.95, indicating that the log-EL ratio function

is below the threshold in the neighborhood of the mean zero.

The EL method can be extended to make inferences on the smooth function

of means (see Hall (1992)), i.e., θ = h(µ), where h(·) is a smooth function and

µ is the mean. For example, the variance σ2 = E(X2)− (E(X))2 can be seen

as the smooth function of the mean vector (E(X), E(X2)). Then, the EL ratio

function for the variance is

Rn(σ2) = max
pi

{
n∏
i=1

npi |
n∑
i=1

pi(Xi −X)2 = σ2,

n∑
i=1

pi = 1, pi ≥ 0

}
.

For example, we consider constructing a confidence interval for the volatility

of the S&P 500 index in the financial stock market. In Figure 2.2, the daily

return of the S&P 500 index for n = 256 trading days and QQ-plot are plotted.

The daily return of financial asset is defined as rt = logPt− logPt−1, where Pt
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Figure 2.1: The left plot is 200 standard normal distributed data and the right plot
is the empirical log-likelihood ratio function for the data.

represents the asset price. The volatility of an financial asset is defined as the

sample standard deviation (n−1
∑n

t=1(rt − r)2)−1/2. For the S&P 500 index,

the annual volatility is σ̂ = (256
n

∑n
t=1(rt − r))−1/2 = 0.7386.

For simplicity, we assume that the returns are i.i.d.. The basic asymptotic

normal theory tells us that

(n− 1)σ̂2

σ2
⇒ χ2

n−1, as n→∞. (2.3)

Based on (2.3), the (1 − α)100% confidence interval for the volatility can be

constructed through

χ2
n−1,α/2 <

(n− 1)σ̂2

σ2
< χ2

n−1,1−α/2.

Here, for α = 0.05, Table 2.1 compares the confidence interval formed by

asymptotic normal theory and the EL method. It should be noted that the

confidence interval based on the normal method is narrower than that based

on the EL method. However, as the QQ-plot suggests that the distribution of

the return is heavy-tailed, the EL method is more trust-worthy.

Qin and Lawless (1994) linked EL with generalized estimating equations,

which provides a flexible way to incorporate the parameter information. For
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Figure 2.2: The left plot shows the S&P 500 daily return for 256 trading days. The
right plot shows the QQ plot of the data, which indicates that the distribution of
the return is heavy-tailed.

Method Lower Upper
Empirical Likelihood 0.6395 0.8275

Normal Theory 0.6797 0.8088

Table 2.1: 95% confidence interval for the volatility of S& P 500 index σ.

i.i.d. random vector X ∈ Rd, and θ ∈ Θ ⊂ Rp, the generalized estimating

equation (GEE) m(X, θ) : Rd ×Θ→ Rk satisfies

E(m(X, θ0)) = 0, (2.4)

at true parameter value θ0. The GEE estimator θ̂ is the solution of

1

n

n∑
i=1

m(Xi, θ̂) = 0. (2.5)

Different estimating equations lead to different parameter estimators. For

example, if we take m(X, θ) = X − θ, then (2.5) gives θ̂ = X; if we take

m(X, θ) = 1{X∈A} − θ, then (2.5) gives θ̂ = 1
n

∑n
i=1 1{Xi∈A}. In particular,

when A = (−∞, θ] and m(X, θ) = 1{X∈A} − α, then θ̂ is the sample quantile

estimator. The EL ratio function is constructed by profiling the probability
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under GEE constraints,

Rn(θ) = max
pi

{
n∏
i=1

npi |
n∑
i=1

pim(Xi, θ) = 0,
n∑
i=1

pi = 1, pi ≥ 0

}
. (2.6)

Qin and Lawless (1994) proved that

−2 logRn(θ0)⇒ χ2
k, as n→∞. (2.7)

For example, we construct the EL ration function for the quantile with

read data in Owen (2001). Define the quantile q(p) as P (X ≤ q(p)) = p. In

this case, the EL ratio function for q(p) is

Rn(q(p)) =

(
p

p̂

)np̂(
1− p
1− p̂

)n(1−p̂)

,

where p̂ = 1
n

∑n
i=1 1{Xi≤q(p)}. The data are pounds of milk produced by 22

dairy cows from Table 3.2 in Owen (2001). For p = 0.5, the sample median is

q(0.5) = 3527. Also, the 85% sample quantile is q(0.85) = 4628 and the 10%

sample quantile is q(0.1) = 1932.
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Figure 2.3: The empirical likelihood ratio function for the median, upper 85% and
lower 10% quantiles of pounds of milk.

Estimating equations can also be defined through parametric likelihoods.

Suppose X1, . . . , Xn are i.i.d. random variables with density function f(X, θ).

Consider the estimating function

m(X, θ) =
∂

∂θ
log f(X, θ) =

g(X, θ)

f(X, θ)
, (2.8)
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where g(X, θ) = ∂
∂θ
f(X, θ) is the first derivative of density function. In this

case, m(X, θ) satisfies (2.4) and is called the score function. The parametric

maximum likelihood estimator (MLE) is obtained by solving equation (2.5)

with score function (2.8). The nonparametric Wilks’s theorem for EL with

independent score functions is a typical example in Qin and Lawless (1994).

Many authors have applied EL to make inferences from independent data

in numerous areas. For example, Chen and Hall (1993) introduced EL to quan-

tile estimation using a kernel smoothing technique, while Hjort et al. (2009)

and Chen et al. (2009) developed EL for high-dimension data analysis and Ki-

tamura (2001) used EL in econometric moment restriction testing problems.

2.2 Empirical Likelihood for Dependent Data

Recall that one key property of the EL method is “self-studentization”. How-

ever, this property may fail for dependent data. To illustrate the problem,

consider the example of the stationary time series in Kitamura (1997). Con-

sider constructing a confidence region for the mean µ = E(Xt) with stationary

time series X1, . . . , Xn ∈ Rd. Suppose that we treat Xi as independent and

define the EL ratio function as

Rn(µ) = max
pi

{
n∏
i=1

npi |
n∑
i=1

pi(Xi − µ) = 0d,
n∑
i=1

pi = 1, pi ≥ 0

}
.

Under mild conditions, the log-EL ratio statistic evaluated at the true value

µ0 satisfies

−2 logRn(µ0) = n(X − µ0)
′
Σ̂−1(X − µ0) + op(1),

where Σ̂ = n−1
∑n

i=1(Xi−µ0)(Xi−µ0)
′
. If Xi are i.i.d., then −2 logRn(µ0) has

an asymptotic chi-squared distribution. However, for stationary time series,

the covariance matrix Σ̂ converges to Var(Xi) in probability, rather than the
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desired limit
∑∞
−∞Cov(Xi, Xi−j). In this case, the log-EL function does not

converge to the desired chi-squared limit, and the EL method fails.

2.2.1 Martingale Estimating Equations

A way to remedy the failure of the EL method in dependent processes is to

establish a model (e.g., an autoregressive moving average (ARMA) model) to

remove the dependence so that the residuals become independent. Suppose

that a score function m: Rd(q+1) ×Θ→ Rk can be specified such that

m(Xt, . . . , Xt−q; θ0) = εt ,

where {εt} is an i.i.d. (or more generally, a martingale difference sequence)

process. Note that m(Xt, . . . , Xt−q; θ0) satisfies equation (2.4). For example,

we specify a causal real-valued AR(q) model for Xt. That is, we can express

Xt as Xt = φ1Xt−1 + · · ·+φqXt−q+et, where {et} are i.i.d. with finite variance

Var(et). Inferring from the AR parameters θ = {φ1, . . . , φq} ∈ Θ ⊂ Rq, the

score function is

m(Xt, . . . , Xt−q; θ) = {Xt −
q∑
i=1

φiXt−i}(Xt−1, . . . , Xt−q)
′ ∈ Rq.

It can be easily shown that m(X, θ), for X = (Xt, . . . , Xt−q, θ) is a martingale

difference sequence and satisfies equation (2.4). Based on this score function,

the EL ratio statistic is

Rn(θ) = max
pi

{
n∏
i=1

npi |
n∑

i=q+1

pim(Xi, . . . , Xi−q; θ) = 0q,
n∑
i=1

pi = 1, pi ≥ 0

}
.

Chuang and Chan (2002) showed that when the roots of characteristic func-

tions lie outside the unit circle (i.e., unstable AR process), profiling the n− q

data results that

−2 logRn(θ0)⇒ χ2
q, as n→∞.
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The martingale estimating equation method is more natural than Kitamura’s

(1997) blockwise method, which is introduced in the next section, as it does

not need to study the block size to reduce the dependence.

2.2.2 Blockwise Empirical Likelihood

Kitamura (1997) proposed a blockwise EL method as a way to capture the

dependence of the underlying process. He noted that constructing a parametric

model to remove the dependence is often too restrictive, and that the result

may be sensitive to the specification of the unknown dependence structure.

Thus, he proposed a blockwise EL method that preserves the dependence

among the neighboring data and adjusts the log-EL ratio function to provide

a valid confidence region.

Assume that {X1, . . . , Xn} ∈ Rd is a stationary realization with estimating

functions m(X, θ) : Rd × Θ ⊂ Rp → Rk. Let the block length ln = l be an

integer sequence satisfying l−1 + l/n→ 0 as n→∞; that is, the block length

increases as the sample size increases, but the rate is slower. In this case,

one block of data is (Xt, . . . , Xt+l−1), for t = l, . . . , N = n − l + 1. Instead

of constructing EL with independent estimating functions, the blockwise EL

is constructed by the block Φi(θ) = 1
l

∑i+l−1
j=i m(Xi, θ), for i = 1, . . . , N . The

blockwise EL ratio function is

RN(θ) = max
pi

{
N∏
i=1

Npi |
N∑
i=1

piΦi(θ) = 0k.
N∑
i=1

pi = 1, pi ≥ 0

}
.

Here, the block data average Φi(θ) can be treated as independent.

If the series {Xt} satisfies the strong mixing condition: αX(k)→ 0, as k →

∞, where αX(k) = supA,B |P (A ∩ B) − P (A)P (B)|, A ∈ F0
−∞, B ∈ F∞k , and

Fnm = σ(Xi,m ≤ i ≤ n);
∑∞

k=1 αX(k)1−1/c < ∞ for c > 1; l−1 + l2/n → 0, as

n→∞, then the log-EL ratio function admits the self-studentization property

−2l−1 logRN(θ0)⇒ χ2
k, as n→∞.
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In particular, −2 logRN(θ0) with l = 1 reproduces the result of (2.7) for i.i.d.

data.

One extension of the blockwise EL method is the tapered blockwise EL

method, which introduces data tapers to define a smoothed blockwise EL.

Inferring from population mean µ, the block estimating functions can be con-

structed as Φi(µ) =
∑i+l−1

j=i (Xj − µ)/l as usual. Define the length l data

taper sequence wl(1), . . . , wl(l) ∈ [0, 1], and ‖wl‖1 ≡
∑l

j=1wl(j). The tapered

blockwise EL method replaces Φi(µ) by tapered block estimating functions

Ti(µ) ≡
l∑

j=1

wl(j)(Xi+j−1 − µ)/‖wl‖1, (2.9)

for i = 1, . . . , N . The sequence of weights are formulated as

wl(j) ≡ w

(
j − 0.5

l

)
, j = 1, . . . , l,

where w(t) : R → [0, 1], and w(t) = 0, when t /∈ [0, 1]. To make the edges

of the data tapers downweight the block data, w(t) is symmetric about 1
2
,

nondecreasing for t ∈ [0, 1/2]. Downweighting the block data at the edges can

reduce the dependence of the block data averages.

For example, we may use the trapezoidal taper wtrap(t) = 2t1[0,1/2](t) +

2(1− t)1[1/2,1](t) or the cosine-bell taper wcos(t) = 1−cos(2πt)
2

1[0,1](t). Figure 2.4

plots the two data tapers, and shows that both data tapers achieve maximum

at t = 1/2 and decrease to zero at t = 0 or t = 1. If w(t) = 1[0,1](t), the

tapered block estimating function reduces to an un-tapered block estimating

function.

More generally, the tapered blockwise EL ratio function for the smooth

function of means is

RN(θ) = max
pi

{
N∏
i=1

Npi | h(
N∑
i=1

piTi) = θ.

N∑
i=1

pi = 1, pi ≥ 0

}
,

where Ti =
∑l

j=iwl(j)Xi+j−1/‖wl‖. Under conditions that are similar to those

of the blockwise EL method, Nordman (2009) proved the self-studentization
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Figure 2.4: Data tapers for blockwise empirical likelihood.

property for the tapered blockwise EL,

−2aN logRN(θ0)⇒ χ2
k, as n→∞, (2.10)

where aN =
∑l

j=1wl(j)
2/(
∑l

j=1 wl(j))
2. In equation (2.10), the adjustment

sequence an accounts for both overlapping blocks and the data taper. One

attractive property of the tapered blockwise EL is its smaller coverage errors of

EL confidence regions. For the blockwise EL, the coverage error is of an order

O(n−1/3), when the optimal rate of l is O(n1/3). For the tapered blockwise

EL, the coverage error is of an order O(n−9/20), when the optimal rate of l is

O(n1/5).

2.2.3 Frequency Domain Empirical Likelihood

Another way to make inferences from dependent data using the EL method

is to do the formulation in a frequency domain. Unlike the blockwise EL

method, which uses the data blocks to capture the dependence, the frequency

domain EL method uses the discrete Fourier transform (DFT) to weaken the

dependence. It is well known that, under some regularity conditions, the DFTs
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at different frequencies are asymptotically uncorrelated (see Brillinger (1981),

Priestley (1981)). By mimicking the periodogram ordinates as independent

data, we can construct the approximate independent estimating functions.

Incorporating these functions as EL constraints, we can formulate a frequency

domain EL function for dependent processes. Monti (1997) first established

the periodogram-based EL function for short-memory time series. Nordman

and Lahiri (2006) extended Monti’s formulation to a general setting for both

SMTS and LMTS.

To introduce Monti’s formulation, we consider a stationary linear process

{Xt} satisfying

Xt =
∞∑
j=0

aj(θ)εt−j, (2.11)

where {εt} is an i.i.d. innovation process with a mean of zero and a fi-

nite variance of σ2
ε < ∞. Let γθ(k) = Cov(Xt, Xt+k) be the autocovariance

function at lag k. If the autocovariance function (ACVF) is summable, i.e.,∑∞
k=−∞ γθ(k) < ∞, we call {Xt} a SMTS. Assume further that the spectral

density function of Xt given by

f(ω, θ) =
1

2π

∞∑
k=−∞

γθ(k)e−ikω, ω ∈ Π = [−π, π], (2.12)

where i =
√
−1, has a second-order continuous derivative on Π. Denote the

normalized DFT of sample {X1, . . . , Xn} as Jn(ω) = 1√
2πn

∑n
t=1Xte

−itω, then

the periodogram is In(ω) = Jn(ω)Jn(−ω). Monti formulated the EL function,

for θ ∈ Rp and ωj = 2πj/n for j = 1, . . . , n, with score function

mj(θ) =
∂ log{f(ωj, θ)}

∂θ

{
In(ωj)

f(ωj, θ)
− 1

}
, (2.13)

which is the score function of the Whittle likelihood (see Whittle (1953))

WL(θ) = −
n∑
j=1

log{f(ωj, θ)} −
n∑
j=1

In(ωj)

f(ωj, θ)
.

Because the periodogram ordinate In(ωj) is asymptotically i.i.d. under some

conditions (see Brillinger (1981)), mj(θ) is asymptotically i.i.d.. Based on
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mj(θ), the Whittle-type periodogram-based EL ratio function can be con-

structed as

Rn,F(θ) = max
pj

{
n∏
j=1

npj |
n∑
j=1

pjmj(θ) = 0,
n∑
j=1

pj = 1, pj ≥ 0

}
. (2.14)

We use a standard Lagrange multiplier argument and obtain

−2 logRn,F(θ) = 2
n∑
j=1

log(1 + t(θ)
′
mj(θ)),

where t(θ) is the solution of

n∑
j=1

mj(θ)

1 + t(θ)′mj(θ)
= 0p.

It should be noted that, because

E(mj(θ0)) = O(n−1),

the Whittle-type periodogram-based score function mj(θ) fails to satisfy equa-

tion (2.4). Despite the order n−1 bias problem, Monti (1997) established the

asymptotic chi-squared limit of the periodogram-based log-EL ratio function,

−2 logRn,F(θ0)⇒ χ2
p, as n→∞.

Based on the chi-squared limit, one can construct confidence region and test

hypothesis for SMTS.

Nordman and Lahiri (2006) formulated the frequency domain EL function

in a more general setting. Assume that the parameter of interest θ is defined

through estimating equation∫ π

−π
Φ(ω, θ0)f(ω) dω = φ0 ∈ Rk, (2.15)

for some known vector φ0 and Φ(ω, θ) : R×Θ→ Rk. Typically, the constants

φ0 should equal 0k. However, in special cases, φ0 allows for other values.

The general frequency domain EL method can be combined with the Whit-

tle estimation. Consider that f(ω, θ) belongs to a parametric family of spectral
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densities F ≡ {f(ω, θ), θ ∈ Θ}. The Whittle estimation aims to find θ0, which

minimizes WL(θ) =
∫ π
−π {log f(ω, θ) + f(ω)/f(ω, θ)} dω, where f(ω) is the

true spectral density function. Consider a particular parametrization,

f(ω, θ) =
σ2
ε

2π
kβ(ω), ω ∈ Π,

where θ = (σ2
ε , β)

′ ∈ (0,∞)×Rp−1 and kβ is the density kernel on Π. Note that

kβ satisfies Kolmogorov’s formula
∫ π
−π log kβ(ω) dω = 0. Then, the minimizer

θ0 of WL(θ) solves∫ π

−π

∂

∂β
k−1
β0

(ω)f(ω) dω = 0p−1, and

∫ π

−π

f(ω)

f(ω, θ0)
dω = 2π.

In this case, (2.15) holds with

φ0 = (π, 0, . . . , 0)
′ ∈ Rp,

and

Φ(ω, θ) = (f−1(ω, θ),
∂

∂β
k−1
β (ω))

′ ∈ Rp.

For inference on β, one should choose Φ̃(ω, θ) = ∂
∂β
k−1
β (ω) ∈ Rp−1, which

satisfies (2.15) with φ0 = 0p−1.

The general frequency domain EL ratio statistic with estimating equation

(2.15) is

Rn(θ) = max
pi

{
n∏
i=1

npi |
n∑
i=1

piΦ(ωi, θ)In(ωi) = φ0,
n∑
i=1

pi = 1, pi ≥ 0

}
.

(2.16)

The nonparametric Wilks’s theorem holds for the general frequency domain

EL.

Theorem: Suppose that {Xt} is a linear process defined in (2.11) with E(ε2t ) >

0, E(ε8t ) <∞ and
∑∞

j=−∞ |aj(θ)| <∞. Suppose that
∫ π
−π Φ(ω, θ0)f(ω) dω = φ0

holds; and each component of Φ(·, θ0) is a Lipschitz continuous function of an

order greater than 1/2 on [−π, π]; and the k×k matrix
∫ π
−π f

2(ω)Φ(ω, θ0)Φ(ω, θ0)
′
dω

is full rank. If φ0 = 0k, then

−2 logRn(θ0)⇒ χ2
k as n→∞.



www.manaraa.com

Chapter 2 Empirical Likelihood Background 19

Also, Nordman and Lahiri proposed a model-based version of the general

frequency domain EL method, when the true spectral density f(ω) is assumed

to lie in a parametric family F ≡ {f(·, θ) : θ ∈ Θ}. The frequency domain EL

ratio statistic is

Rn,F(θ) = max
pi

{
n∏
i=1

npi |
n∑
i=1

piΦ(ωi, θ)(In(ωi)− f(ωi, θ)) = 0,
n∑
i=1

pi = 1, pi ≥ 0

}
.

Under some conditions, −2 logRn,F(θ) has asymptotic chi-squared limiting

distribution.

Theorem: In addition of assumptions on the theorem for Rn(θ), suppose

that f(·) = f(·, θ0) ∈ F ; and each component of f(·, θ0)m(·, θ0) is a Lipschitz

continuous function of an order greater than 1/2 on [−π, π]. Then, if φ0 = 0k

in (2.15),

−2 logRn,F(θ0)⇒ χ2
k, as n→∞. (2.17)

Furthermore, (2.17) still holds even for φ0 6= 0k, if κ4,ε ≡ E(ε4t )−3(E(ε2t ))
2 = 0.

One difference betweenRn(θ) andRn,F(θ) is that the formulation ofRn,F(θ0)

requires the true spectral density f(ω) to belong to a model class f(ω) =

f(ω, θ0) ∈ F . In contrast, Rn(θ) only requires the spectral moment condition

(2.15). The other difference is that the chi-squared limit of Rn,F(θ) still holds

when φ0 6= 0k. In this case, we require that κ4,ε = 0 (i.e. {εt} is a Gaussian

process).

Monti’s Whittle-type periodogram-based EL method is linked to the model-

based version of the frequency domain EL method through the score functions

mj(θ) = Φ(ωj, θ)(In(ωj)− f(ωj, θ)),

where Φ(ωj, θ) = ∂
∂θ
f−1(ωj, θ).

Treating the periodogram collections {In(ωj) : j ∈ Sn} as approximately

independent in the bootstrap context is discussed in Hurvich and Zeger (1987),

and Kreiss and Paparoditis (2011). However, the dependence among the peri-

odogram collection creates problems in estimation when applied to the Whittle
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score function (see Dahlhaus and Janas (1996)). Specifically, the dependence

between different periodogram ordinates for non-Gaussian processes leads to

non-negligible terms of order O(n−1), which are negligible for Gaussian pro-

cesses. Based on a different score function, Ogata (2005) considered EL for

non-Gaussian stationary processes. In Chapters 4 and 5, our discussion of

the Bartlett correction mainly relies on the formulation of the Whittle-type

periodogram-based EL ratio function defined in (2.14).
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Chapter 3

Bartlett Correction Background

As noted in Chapter 2, the key property of the empirical likelihood (EL)

method is “self-studentization”, meaning that the test statistic formulated by

the empirical log-likelihood (log-EL) ratio function automatically converges to

a chi-squared distribution without assuming any joint distribution of the data.

Based on this property, the confidence region can be constructed using the

critical value of the chi-squared distribution. Therefore, a natural question

arises: is the chi-squared approximation good enough, or can we correct the

critical values and get a more accurate approximation?

In the following sections, we review the Bartlett correction method under

the parametric and nonparametric likelihood (i.e., EL) settings. Section 3.1

presents the method for three types of statistics: the log-likelihood ratio (LR)

test, the score (S) test, and the Wald (W ) test. Section 3.2 reviews the Bartlett

correction for EL with independent and identically distributed (i.i.d.) data.

21
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3.1 Bartlett Correction for Parametric Likeli-

hood

3.1.1 Bartlett Correction for the Log-Likelihood Ratio

Statistic

Recall that the log-likelihood ratio statistic for θ ∈ Θ ⊂ Rp is

LR(θ0) = 2{l(θ̂)− l(θ0)},

where l(θ) = log f(X1, . . . , Xn; θ) denotes the log-likelihood; f(·) is the proba-

bility density function (p.d.f.); and θ̂ = argmaxθ l(θ) is the unconstrained max-

imum likelihood estimator (MLE). Under the null hypothesis H0: θ = θ0 ∈ Rk,

k ≤ p, the parametric Wilks’s theorem shows that

LR(θ0) = 2{l(θ̂)− l(θ0)} ⇒ χ2
p−k, as n→∞. (3.1)

Given some higher-order asymptotic expansion techniques, it is not difficult to

derive

P{LR(θ0) ≤ x} = P{χ2
q ≤ x}{1 +O(n−1)}. (3.2)

Bartlett (1937) first proposed a method to improve the approximation (3.2)

so that a faster convergence rate can be obtained. To introduce this method,

given

E(LR(θ0)) = q(1 + b/n+O(n−2)),

where b is a constant that can be consistently estimated, and q = p − k,

we can scale LR(θ0) by 1 + b/n, such that E(LR(θ0)/(1 + b/n)) approxi-

mates more accurately to the mean of χ2
q. This simple adjustment is called

a “Bartlett correction”, and b here is called the “Bartlett correction fac-

tor”. After the adjustment, the cumulative distribution function (c.d.f.) of
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LR∗(θ0) = LR(θ0)/(1 + b/n) converges faster than the c.d.f. of LR(θ),

P{LR∗(θ0) ≤ x} = P{χ2
q ≤ x}{1 +O(n−2)}.

By showing that the higher-order cumulants of the derivatives of log-

likelihood functions are more equivalent to those of the chi-squared distri-

bution, Lawley (1985) first formally proved that the LR method is Bartlett

correctable. Beale (1960) interpreted the Bartlett correction factor in rela-

tion to the curvature of the surface in normal regression models, which was

extended to non-normal models by McCullagh and Cox (1986).

An important extension of Lawley’s result was developed by Hayakawa

(1977), who obtained the asymptotic expansion for the distribution of LR un-

der H0 against a composite alternative hypothesis H1. Specifically, he showed

that

P{LR(θ0) ≤ x} = Fq(x) +
1

24n
[A2Fq+4(x)− (2A2 − A1)Fq+2(x)

+(A2 − A1)Fq(x)] +O(n−3/2), (3.3)

where Fq(x) = P (χ2
q ≤ x). A1 and A2 are functions of the cumulants of

derivatives of the log-likelihood function. The error O(n−3/2) in (3.3) is always

O(n−2) (see Barndorff-Nielson and Hall (1988)). For general statistics, A2 = 0

and thus the Bartlett correction factor admits a simple form b = A1/(12q).

Formula (3.3) is widely applicable to models with nuisance parameters, and to

inference with independent but not identically distributed data.

The Bartlett correction for likelihood ratio test statistics has been extended

in many ways. Cordeiro (1983, 1987) derived a closed-form of the Bartlett

correction factor in generalized linear models. Attfield (1991, 1995) applied

Bartlett correction to the LR test for homoskedasticity in linear models and

systems of equations, respectively. DiCiccio (1984) proved the Bartlett cor-

rection for the signed root log-likelihood ratio statistic LR1/2. McCullagh and

Cox (1986) expressed the Bartlett correction factor as the invariant combina-

tions of cumulants of the first two derivatives of the log-likelihood and gave it
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a geometric interpretation. Bickel and Ghosh (1990) considered Bartlett cor-

rection in a Bayesian framework. Specifically, the posterior distribution of the

LR statistic converges to that of the referenced chi-squared distribution with

error O(n−1), and is reduced to order O(n−2) by Bartlett correction. Based

on the marginal posterior p.d.f. given by Tierney et al. (1989), DiCiccio and

Stern (1993) derived an explicit formula for the Bartlett correction factor in a

general Bayesian framework.

Finally, it is not generally true that the LR method is Bartlett correctable

with discrete data. Frydenberg and Jensen (1989) presented extensive numer-

ical results showing that Bartlett correction does not always produce an order

O(n−2) error for lattice distributed data. In addition, Bartlett correctability

does not generally hold for the Score and Wald statistics.

3.1.2 Bartlett-Type Correction for the Score Statistic

Assume that X1, . . . , Xn are i.i.d., and define U(θ) = ∇θl(θ) = [∂l(θ)/∂θj]

for j = 1, . . . , p, where θ ∈ Rp, as the first derivative of a log-likelihood;

Var(U(θ)) = E(U(θ)U(θ)
′
) = E(−∇θ∇

′

θl(θ)) = {E(−∂2l(θ)/∂θi∂θj)} = I(θ)

for i, j = 1, . . . , p, as the Fisher information matrix. The Rao score statistic

for θ is

S(θ) = U
′
(θ)I−1(θ)U(θ).

It is well known that, under H0: θ = θ0 ∈ Rk, for k ≤ p,

S(θ0) = U
′
(θ0)I−1(θ0)U(θ0)⇒ χ2

p−k, as n→∞.

Harris (1985) derived an asymptotic expansion for the null distribution of S(θ)

in the presence of nuisance parameters,

P (S(θ0) ≤ x) = Fq(x) +
1

24n
[A3Fq+6(x) + (A2 − 3A3)Fq+4(x) + (3A3 − 2A2

+A1)Fq+2(x) + (A2 − A1 + A3)Fq(x)] + o(n−1), (3.4)
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where Fq(x) = P (χ2
q ≤ x), for q = p − k, and A1, A2 and A3 are functions

of higher cumulants of log-likelihood derivatives. Obviously, equation (3.4)

implies that it is impossible to scale S(θ0) by a linear transformation, which

corrects all of the cumulants of S(θ0) to smaller orders. To improve the chi-

squared approximation in (3.4), Cox (1988) first proposed a new correction

method, which was later generalized by Cordeiro and Ferrari (1991). They

showed that the corrected score statistic is

S∗(θ) = S(θ)

{
1− 1

n

3∑
j=1

rjS
j−1(θ)

}
, (3.5)

where r1 = (A1 − A2 + A3)/(12q), r2 = (A2 − 2A3)/(12q(q + 2)) and r3 =

A3/(12q(q + 2)(q + 4)). Under regularity conditions,

P (S∗(θ0) ≤ x) = Fq(x) + o(n−1).

The non-linear correction method in (3.5) is called the “Bartlett-type correc-

tion”. In conclusion, the Bartlett-type correction for the score statistic reduces

the convergence rate from O(n−1) to o(n−1).

3.1.3 Bartlett-Type Correction for the Wald Statistic

The Wald statistic under H0: θ = θ0 ∈ Rk, for k < p, is

W (θ0) = (θ̂ − θ0)
′I(θ0)(θ̂ − θ0),

where θ̂ is unconstrained MLE. Under some regularity conditions,

W (θ0) = (θ̂ − θ0)
′I(θ0)(θ̂ − θ0)⇒ χ2

p−k, as n→∞.

Phillips and Park (1988) obtained an Edgeworth expansion for W (θ0),

P (W (θ0) ≤ x) = Fq(x) +
1

n
[a3Fq+6(x) + a2Fq+4(x)

+a1Fq+2(x) + a0Fq(x) + b0fq(x)] + o(n−1), (3.6)
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where fq(x) = ∂Fq(x)/∂x; and ajs are functions of the higher-order cumulants

of the derivatives of the log-likelihood function. Note that expansion (3.6)

is different from expansion (3.3) due to the non-negligible term fq(·). But

Phillips and Park showed that, for general statistics, this term equals zero.

Analogous to the score statistic, the Bartlett-type correction for the Wald

statistic is

W ∗(θ0) = W (θ0)

{
1− 1

n

3∑
j=0

rjW
j−1(θ0)

}
, (3.7)

where rj are functions of aj in (3.6). Under regularity conditions,

P (W ∗(θ0) ≤ x) = Fq(x) + o(n−1).

In conclusion, the convergence rate of the score statistic to the chi-squared limit

is reduced from O(n−1) to o(n−1) by the Bartlett-type correction technique.

3.1.4 Numerical Studies on Bartlett Correction for Para-

metric Likelihood

In this simulation study, we perform a finite sample comparison of two types of

parametric likelihood test statistics: the log-likelihood ratio (LR) statistic and

the score (S) statistic. We simulate the sample X1, . . . , Xn from univariate

distribution N(µ, σ2), with the sample sizes n = 20, n = 50 and n = 100. The

nominal type-I error rates are α = 0.01, α = 0.05 and α = 0.1, respectively.

We are interested in testing for variance H0: σ2 = σ2
0 ∈ R, against a two-sided

alternative. The true values of the mean and the variance are µ0 = 0 and

σ2
0 = 1, respectively.

For the LR test statistic, Hayakawa (1977) gave the Edgeworth expansion

under H0,

P (LR(σ2
0) ≤ x) = Ff (x) +

1

24n
d(2d2 + 3d− 1)[Ff+2(x)− Ff (x)] + o(1/n),
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where d is the difference in dimension between the null and alternative dis-

tribution and f = d(d + 1)/2. For a real-valued process {Xt}, the Bartlett

correction factor is b = 1/3.

n α = 0.1 α = 0.05 α = 0.01
20 LR 0.8711 0.9343 0.9852

Bart. LR 0.8722 0.937 0.9857

50 LR 0.8822 0.9368 0.9867
Bart. LR 0.8826 0.9372 0.9871

100 LR 0.8875 0.952 0.988
Bart. LR 0.895 0.9514 0.988

Table 3.1: Coverage accuracy of LR test for normal distribution variance σ2, repli-
cations = 10, 000.

Table 3.1 shows that the coverage probabilities of LR and Bartlett-corrected

LR increase with the sample size. For different sample size and confidence

levels (1− α)100%, the Bartlett correction successfully increases the coverage

probabilities for the LR test statistic. The same conclusion about the Bartlett-

type correctability for the score test statistic is confirmed by the finite sample

coverage probabilities in Table 3.2.

For the score test, the corrected statistic for σ2 using (3.5) is

S∗(σ2
0) = S(σ2

0)

{
1− 1

n

3∑
j=1

rjS
j−1(σ2

0)

}
.

For the i.i.d. data from the univariate normal distribution N(µ, σ2) with q = 1,

one can obtain that A1 = −6, A2 = 12 and A3 = 40. Thus, the polynomials

rj in (3.5) are r1 = 11/6, r2 = −17/9 and r3 = 2/9.
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n α = 0.15 α = 0.1 α = 0.05
20 S 0.8574 0.9158 0.9906

Bart. S 0.8474 0.9014 0.9482

100 S 0.853 0.9064 0.9558
Bart. S 0.816 0.898 0.9534

Table 3.2: Coverage accuracy of score test for normal distribution univariate vari-
ance σ2, replications = 5, 000.

3.2 Bartlett Correction for Empirical Likeli-

hood with Independent Data

Introduced in Section 2, the parameter of interest θ can be defined through

a smooth function of means θ = h(µ) ∈ Rd, where h(·) is a smooth function.

For inference on θ, the log-EL ratio function admits the nonparametric Wilks’s

theorem, i.e., for θ = θ0

−2 logRn(θ0)⇒ χ2
d, as n→∞,

where Rn(θ0) is defined as

Rn(θ0) = max
pi

{
n∏
i=1

npi | h

(
n∑
i=1

piXi

)
= θ,

n∑
i=1

pi = 1, pi ≥ 0

}
.

Under regularity conditions plus the Cramér’s condition

lim sup
τ→∞

|E(exp(iτXt))| <∞,

it follows that

P (−2 logRn(θ0) ≤ χ2
d,1−α) = 1− α +O(n−1). (3.8)

If the Cramér’s condition does not hold, the coverage error in (3.8) should be

O(n−1/2) (see Owen (2001)). When

E(−2 logRn(θ0)) = 1− b

n
+ o(n−1),
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The Bartlett correction of EL replaces −2 logRn(θ) by (1 + b/n)− 2 logRn(θ)

or equivalently, replaces the critical value χ2
d,1−α by (1 − b/n)χ2

d,1−α. Here, b

is the Bartlett correction factor. Then, the Bartlett corrected EL confidence

region becomes

In,1−α =

{
θ | −2 logRn(θ) ≤ (1− b

n
)χ2

d,1−α

}
.

DiCiccio, Hall and Romano (1991) surprisingly showed that the coverage prob-

ability of In,1−α approximates more accurately to nominal level 1− α. Gener-

ally, b is unknown and can be consistently estimated. One can use the plug-in

estimator b̂n, which leads to an
√
n-consistent estimate of b. Based on b̂n, the

Bartlett-corrected EL confidence region becomes

I∗n,1−α =

{
θ | −2 logRn(θ) ≤ (1− b̂n

n
)χ2

d,1−α

}
.

In this case,

P (θ ∈ In,1−α) = P (θ ∈ I∗n,1−α) = 1− α +O(n−2).

Specifically, inferring from mean θ = µ ∈ R, the Bartlett correction factor

is

b =
1

2

µ4

µ2
2

− 1

3

µ2
3

µ3
2

=
κ+ 3

2
− γ2

3
,

where µk = E(X − E(X))k and γ and κ are the skewness and the excess

kurtosis, respectively. The Bartlett-corrected EL confidence interval for the

mean is

In,1−α =

{
µ | −2 logRn(µ) ≤ (1− b

n
)χ2

1,1−α

}
.

In the simulation study of the Bartlett correction for EL inference on the

univariate mean, we generate X
i.i.d.∼ N(µ, σ2), with µ0 = 0 and σ2

0 = 1. The

results are based on different sample sizes n = 20 and n = 50, with the nominal

type-I error rates are α = 0.01, α = 0.05 and α = 0.1.

The finite sample results of Table 3.3 clearly show that Bartlett correction

successfully improves the coverage accuracies of EL inference on mean.
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n α = 0.15 α = 0.1 α = 0.05
20 EL 0.8374 0.8882 0.8792

Bart. EL 0.8564 0.9026 0.8918

50 EL 0.846 0.8937 0.9446
Bart. EL 0.8488 0.8999 0.9482

Table 3.3: Coverage accuracy of EL test for normal distribution univariate mean
µ, replications = 5, 000.

The theorectical proofs of Bartlett correction for EL mainly base on the

Edgeworth expansion technique. The validity of Edgeworth expansion is es-

tablished in Bhattacharya and Ghosh (1978) by assuming

E(|X|j+2) <∞, and lim sup
|t|→∞

|ϕ(t)| < 1.

The former condition ensures finite moment existence and the latter restriction

is Cramér’s condition. For certain estimates θ̂ and the true parameter value

θ0, the distribution function of
√
n(θ̂−θ0)/σ can be expanded as a power series

of n−1/2 (see Hall (1992)), i.e.,

P (
√
n(θ̂ − θ0)/σ ≤ x) = Φ(x) + n−1/2p1(x)φ(x) + · · ·+ n−j/2pj(x)φ(x) + · · · ,

(3.9)

where φ(x) is p.d.f. of standard normal distribution and Φ(x) =
∫ x
−∞ φ(t) dt.

The expansion (3.9) is called Edgeworth expansion. The coefficients of Edge-

worth polynomials pj(x) depend on the cumulants of
√
n(θ̂−θ)/σ. In addition,

pj(x) is of degree 3j − 1, even/odd when j is odd/even.

For example, consider inference on the population mean, when θ = µ.

Given the i.i.d. real-valued random variables X1, . . . , Xn with known variance

σ2 = Var(Xi), not necessarily normal distributed, one may use µ̂ = 1
n

∑n
i=1 Xi.

By the central limit theorem, Sn =
√
n(θ̂ − θ)/σ ⇒ N(0, 1). Based on the

asymptotic normal distribution, the confidence interval with nominal level 1−α
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is {
θ | θ ∈ (θ̂ − n−1/2σN1−α, θ̂ + n−1/2σN1−α)

}
,

where N1−α is the upper α critical value of the standard normal distribution.

The quality of the normal approximation can be described through the charac-

teristic function (ch.f.). Given Yi = (Xi − µ)/σ and Sn = 1
n

∑n
i=1 Yi, it follows

that

E(eitSn) = ϕn(t)→ E(eitN) = e−t
2/2, as n→∞.

Here, ϕn(t) = [ϕ(t/
√
n)]n, where ϕ(t) is the ch.f. of Yi. The ch.f. of Sn can

thus be expanded as

ϕn(t) = e−t
2/2
{

1 + n−1/2r1(it) + n−1r2(it) + · · ·+ n−j/2rj(it) + · · ·
}
, (3.10)

where rj(·) is a polynomial with degree 3j, and even/odd when j is even/odd.

Taking κj(X) as the j-th cumulant of the random variable X, we have κ1(Yi) =

0 and κ2(Yi) = 1. After some algebra, it can be derived that r1(x) = 1
6
κ3(Y )x3,

and r2(x) = 1
24
κ4(Y )x4 + 1

72
κ3(Y )2x6 in (3.10). By definition

ϕn(t) =

∫ ∞
−∞

eitx dP (Sn ≤ x)

and formula (3.10), P (Sn ≤ x) can be expanded as

P (Sn ≤ x) = Φ(x) + n−1/2R1(x) + n−1R2(x) + · · ·+ n−j/2Rj(x) + · · · , (3.11)

where Rj(x) = pj(x)φ(x) and∫ ∞
−∞

eitx dRj(x) = rj(it)e
−t2/2.

Using the well known formula∫ ∞
−∞

eitx d[rj(−∂/∂x)Φ(x)] = rj(it)e
−t2/2,

it follows that

Rj(x) = rj(−∂/∂x)Φ(x).
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In particular, for j = 1, 2,

R1(x) = −1

6
κ3(Y )(x2 − 1)φ(x), (3.12)

and

R2(x) = −x
[

1

24
κ4(Y )(x2 − 3) +

1

72
κ3(Y )2(x4 − 10x2 + 15)

]
φ(x). (3.13)

Then, the valid Edgeworth expansion to order O(n−3/2) is

P (Sn ≤ x) = Φ(x) + n−1/2R1(x) + n−1R2(x) +O(n−3/2),

where R1(x) and R2(x) are given in (3.12) and (3.13).

Based on the Edgeworth expansion technique, Bartlett correction can be

applied to improve the EL method with independent estimating functions.

Given the i.i.d. real-valued estimating functions m(X, θ): Rd×Θ→ R, the EL

ratio function is

Rn(θ) = max
pi

{
n∏
i=1

npi |
n∑
i=1

pim(Xi, θ) = 0,
n∑
i=1

pi = 1, pi ≥ 0

}
.

Under regularity conditions, E(−2 logRn(θ0)) = 1 + b/n + O(n−2) for some

constant b. Following the previous argument, the Bartlett-corrected EL confi-

dence interval is given by

In,1−α =

{
θ | −2 logRn(θ0) ≤

(
1 +

b

n

)
χ2

1,1−α

}
.

One step in the proof is the formulation of the signed root empirical log-

likelihood ratio statistic. Define the signed root empirical log-likelihood ratio

SR = R1 +R2 +R3 as

−2 logRn(θ0) = nSR2 +Op(n
−3/2) = n(R1 +R2 +R3)2 +Op(n

−3/2),

where R1 = Op(n
−1/2), R2 = Op(n

−1) and R3 = Op(n
−3/2). The specific ex-

pressions of Rj can be found in Zhang (1996). The idea is that the square root
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of an asymptotic chi-squared function should converge to the normal distribu-

tion. Here, SR can be treated as θ̂− θ0 in the classic parametric setting. The

normalized variable
√
nSR/Var(

√
nSR) converges to N(0, 1) in distribution,

and by tedious calculations of the higher-order cumulants of
√
nSR, the valid

Edgeworth expansion for the p.d.f. π(x) of
√
nSR can be established as

π(x) = φ(x)+n−1/2r1(x)φ(x)+n−1r2(x)φ(x)+n−3/2r3(x)φ(x)+O(n−2), (3.14)

where r1 and r3 are odd polynomials and r2 is an even polynomial of degree

2. The coefficients of rj involve higher-order cumulants of m(Xi, θ). Unlike

general statistics, r2 does not involve terms of degrees 4 and 6. The feature

results from the fact that κ3(
√
nSR) = O(n−3/2) and κ4(

√
nSR) = O(n−2).

Furthermore, it can be shown that

E(−2 logRn(θ0)) = 1 +
b

n
+O(n−3/2), (3.15)

where b is a function of higher-order cumulants of m(Xi, θ). Equation (3.15)

implies that scaling the log-EL ratio statistic by the mean can improve the cov-

erage accuracy. As DiCiccio, Hall and Romano (1991) noted, the EL method

is Bartlett correctable because r2(x) in (3.14) is of degree 2. In particular,

r2(x) = b
2
(x2−1). With this form of r2(x), terms of order n−1 in (3.14) can be

removed through the simple adjustment. Let cα = χ2
1,1−α, c

′
α = cα(1 + b/n),

and g(·) denotes the p.d.f. of the χ2
1 distribution. Applying the Edgeworth

expansion (3.14) gives us

P (θ0 ∈ In,1−α) = P (−2 logRn(θ0) ≤ c
′

α) = P ((
√
nSR)2 +Op(n

−3/2) ≤ c
′

α)

=

∫ √c′α

−
√
c′α

φ(x) dx+

∫ √c′α

−
√
c′α

{
n−1/2r1(x)φ(x) + n−1r2(x)φ(x)

+n−3/2r3(x)φ(x)
}
dx+O(n−2)

= 1− α +
b

n
cαg(cα)− b

n
cαg(cα) +O(n−2)

= 1− α +O(n−2).
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Thus, the Bartlett correction method reduces the coverage error of the EL

confidence interval from O(n−1) to O(n−2). Clearly, if either term of degree 4

or 6 in r2 does not vanish, then terms of order n−1 cannot be removed. This

is why Bartlett correction works for EL, but not for general statistics. More

essentially, the sufficient fast decay rates κ3(SR) = O(n−3) and κ4(SR) =

O(n−4) ensure that the terms of orders 4 and 6 disappear. Note that this

conclusion corresponds with terms of orders 3 and 5, which vanish in (3.11).

3.3 Bartlett Correction for Empirical Likeli-

hood with Gaussian Short-Memory Time

Series

Consider a stationary linear process {Xt; t ∈ Z} satisfying

Xt =
∞∑
j=0

aj(θ)εt−j,

where {εt} is an i.i.d. innovation process with a mean of zero and a finite

variance of σ2
ε < ∞. Let γθ(k) = Cov(Xt, Xt+k) be the autocovariance func-

tion (ACVF), where θ ∈ Rp is the parameter of interest. If the ACVFs

are summable, i.e.,
∑∞

k=−∞ γθ(k) < ∞, we call {Xt} a SMTS (see Priest-

ley (1981)). Assume further that the spectral density function f(ω, θ) defined

by (2.12) has a continuous second-order derivative on Π = [−π, π].

Stationary ARMA models have been known to belong to SMTS. For exam-

ple, we simulate a time series {Xt} from an ARMA(1,1) model with a length

of n = 200,

Xt = 0.1Xt−1 + εt + 0.7εt−1, for εt
i.i.d.∼ N(0, 1). (3.16)
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We plot the data and their ACF in Figure 3.1. The ACF decays very

quickly and lies in the asymptotic convergence band within 1 lag.

ARMA(1,1)
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Figure 3.1: The left plot shows a 200 length ARMA(1,1) time series and the right
plot shows the ACF for the data.

The spectral density function for Gaussian ARMA(1,1) models with various

coefficients is shown in Figure 3.2. The spectral density function is bounded

above and below from zero.
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Figure 3.2: The spectral density function of ARMA(1,1) model.

The formulation of Bartlett correction for EL with time series data re-

lies on the Whittle-type periodogram-based estimating functions introduced
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in Section 2.2.3. In this case, the log-EL ratio function is

Rn,F(θ) = max
pj

{
n∏
j=1

npj |
n∑
j=1

pjmj(θ) = 0,
n∑
j=1

pj = 1, pj ≥ 0

}
,

where mj(θ) is given by equation (2.13).

From Theorem 4.3.2 in Brillinger (2001), it is known for SMTS that

cum(Jn(ω1), Jn(ω2)) =

 f(ω1, θ) +O(n−1), ω1 + ω2 ≡ 0(mod 2π),

O(n−1), otherwise.

(3.17)

Based on these two equations, it follows that

E(In(ωj)) = f(ωj, θ0)− c

n
+ o(n−2), (3.18)

where

c =
1

2π

∞∑
j=−∞

| j | γ(j)e−ijωj .

In addition,

cum(In(ω1), In(ω2)) = cum2(Jn(ω1), Jn(−ω2)) + cum2(Jn(ω1), Jn(ω2))

+cum(Jn(ω1), Jn(−ω1), Jn(ω2), Jn(−ω2)). (3.19)

For Gaussian processes, the fourth-order cumulant is zero. By equations

(3.17) and (3.19), the periodogram ordinates are asymptotically independent

for Gaussian SMTS. Due to the n−1 bias in (3.18),

E (m) = E

[
1

n

n∑
j=1

mj(θ0)

]
∼ Kn−1. (3.20)

Based on the asymptotic independent periodogram, Chan and Liu (2010) es-

tablished the stochastic expansion for the signed root empirical log-likelihood

ratio function SR,

−2 logRn,F(θ0) = nSR2 +Op(n
−3/2) = n(R1 +R2 +R3)2 +Op(n

−3/2). (3.21)
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For Gaussian SMTS, it still holds that Rj = Op(n
−j/2) for j = 1, 2, 3. Here,

Rj are functions of higher-order moments of score functions mj(θ0). Whether

the periodogram-based EL is Bartlett correctable relies on the order n−1 bias

of periodogram ordinates in (3.18), because the bias may prevent κ3(SR) and

κ4(SR) from achieving the desired orders O(n−3) and O(n−4), respectively.

After some tedious calculations, Chan and Liu established the stochastic ex-

pansion of SR and derived its first four cumulants. Based on the higher-order

cumulants, they established the valid Edgeworth expansion using the standard

argument in Section 3.2,

P (
√
nSR ≤ x) = Φ(x)− φ(x)

{
C11√
n

+
C12

n
+

1

2

(
C22√
n

+
C23

n
+
C2

11

n

)
r1(x)

+

(
C31

6
√
n

+
C32

6n
+
C11C22

2n

)
r2(x)

+

(
C41

24
√
n

+
C2

22

8n
+
C11C31

6n

)
r3(x)

+

(
C22C31

12n

)
r4(x) +

(
C2

31

72n

)
r5(x)

}
+o(n−1),

where rj(x), j = 1, . . . , 5 are Hermite polynomials, the form of which can

be found in Hall (1992), and Cijs are functions of the first four cumulants of

mj(θ0). Despite the non-negligible n−1 bias in (3.20), Chan and Liu showed

that C12 = C22 = C31 = C32 = C41 = 0, such that r2(x), . . . , r5(x) vanish.

Thus, the valid Edgeworth expansion for the distribution function of
√
nSR

simplifies to

P (
√
nSR ≤ x) = Φ(x)− φ(x)

{
C11√
n

+
1

2

(
C23 + C2

11

n

)
r1(x)

}
+ op(n

−1).

(3.22)

Moreover,

E(−2 logRn(θ0)) = 1 +
b

n
+ o(n−1),

where b = C23+C2
11. In essence, the orders κ3(

√
nSR) = o(n−1) and κ4(

√
nSR) =
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o(n−1) guarantee the Bartlett correctability of EL with Gaussian SMTS. Ap-

plying the standard procedure, it follows that

P (−2 logRn(θ0) ≤ χ2
1,1−α(1 + b/n)) = 1− α + o(n−1),

indicating that the Bartlett correction reduces the coverage errors of the EL

confidence intervals from order O(n−1) to o(n−1).
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Chapter 4

Bartlett Correction for EL with

Gaussian Long-Memory Time

Series

As mentioned in Section 3.2, Chan and Liu (2010) considered the Bartlett

correctability of the EL method for Gaussian weakly dependent processes.

However, it is still unknown whether EL is Bartlett correctable for strongly de-

pendent processes. The strong dependence phenomenon is important because

it has been widely observed in various fields such as astronomy, chemistry,

economics, engineering, physics and statistics. In this chapter, we prove the

Bartlett correctablity of EL for Gaussian long-memory time series (LMTS).

In the following, we formulate the argument based on Monti’s Whittle-type

periodogram-based EL ratio function −2 logRn,F(θ) defined in (2.14), and de-

note l(θ) = −2 logRn,F(θ) for simplicity.

39
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4.1 Introduction

As noted in Chapter 3, one attractive feature of the EL method is Bartlett

correctability, which means that a simple adjustment to the log-EL ratio func-

tion improves the approximation to the chi-squared limit. Subsequently, the

Bartlett-corrected confidence regions achieve better coverage accuracies. We

define the coverage error for true value θ0 ∈ Rp as

Eα = P (l(θ0) ≤ χ2
p,1−α)− (1− α).

Zhang (1996) showed that for EL with independent real-valued estimating

functions, Eα can be reduced from order O(n−1) to O(n−2) using the Bartlett

correction technique. Chan and Liu (2010) used the Whittle-type periodogram-

based EL to show that Eα can be reduced from order O(n−1) to o(n−1) for

Gaussian short-memory time series (SMTS).

It is unclear, however, whether Bartlett correction is applicable to LMTS.

Hurvich and Beltrao (1993) and Robinson (1995) proved that the periodogram

ordinates of LMTS are asymptotically dependent for frequencies near the ori-

gin. That means that formula (3.17) does not hold for LMTS. Therefore, the

proof of the Bartlett correction of EL for weakly dependent processes, which

relies on the asymptotic independence of periodograms, cannot be directly gen-

eralized to LMTS. In this paper, we establish the validity of the Edgeworth

expansion for Gaussian LMTS to make EL moderately Bartlett correctable, in

the sense that, Eα is reduced from order log6 n/n to log3 n/n. Although we

only establish the Bartlett correctability of EL for Gaussian distributed time

series, this exploration provides a fundamental step in further research on non-

Gaussian cases. Moreover, our simulation results demonstrate that the perfor-

mance of Bartlett-corrected EL is better than that of the Bartlett-corrected

version of the Whittle likelihood in Gaussian autoregressive fractionally in-

tegrated moving average (ARFIMA) models, which justifies the usefulness of

Bartlett correction for EL with Gaussian LMTS.
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This chapter is organized as follows. Section 4.2 reviews LMTS models

and the Bartlett correction of EL for i.i.d. observations and Gaussian SMTS.

In Section 4.3, we establish the validity of Edgeworth expansion, which pro-

vides a fundamental tool for the main results. Section 4.4 presents simulation

studies that demonstrate the good finite sample performance of Bartlett cor-

rection in ARFIMA models. Furthermore, we study the coverage errors of both

the Whittle likelihood ratio statistic and the Bartlett-corrected counterpart.

Proofs of technical results are given in Section 4.5.

4.2 Review of Long-Memory Time Series

Consider a weakly stationary real-valued process {Xt} with a mean of zero

and a spectral density function of

f(ω, θ) ∼ Kω−θ as ω → 0+, (4.1)

where K > 0 and θ ∈ R. The parameter θ is known as the memory parameter.

The process Xt is said to have short memory when θ = 0, long memory when

θ ∈ (0, 1) and negative memory when θ ∈ (−1, 0). This model includes two

widely used long memory parametric models: the ARFIMA model (Granger

and Joyeux, 1980; Hosking, 1981), where the fractional parameter d is defined

by d = θ/2, and the fractional Gaussian noise (Mandelbrot and Van Ness,

1968) model, in which the self-similar parameter H satisfies H = (θ + 1)/2.

For details, see Beran (1994).

In the following Figure (4.1), we plot the time series of the Nile’s minimum

river level from year 600 to year 1300, and the autocorrelation function (ACF).

It is noted that the ACF decays polynomially slow, and its quantity lies outside

the asymptotic convergence band even at lag 70.

Figure 4.2 plots the simulated spectral density functions of Gaussian ARFIMA(0, d, 0)

models with different memory parameters θ = 2d. In this case, the spectral
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Figure 4.1: Autocorrelation function of Gaussian long-memory time series.

density function admits an expression

f(ω, θ) =
1

2π

1

|1− exp(−iω)|θ
.

Note that f(ω, θ) is unbounded but integrable at the origin. Due to this singu-
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Figure 4.2: The spectral density function of Gaussian long-memory time series.

larity, periodogram ordinates are asymptotically biased estimators for spectral

density at low frequencies (see Lemma 4.9). Different periodogram ordinates

are also asymptotically correlated when the frequencies tend toward zero (see
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Lemma 4.9). However, when separated by a fixed distance, periodogram ordi-

nates are asymptotically uncorrelated (see Lemmas 4.7 and 4.8).

Recall that the key property in proving the Bartlett correction for EL

with Gaussian SMTS is the asymptotic independent In(ωj) distributed as

1
2
f(ωj, θ)χ

2
1 with rate n−1. The n−1 rate causes the bias of the Whittle-type

score function mj(θ) in (2.13) with magnitude O(n−1). For LMTS, however,

(3.18) does not hold, i.e., E(m) does not converge to zero at rate n−1. In

Lemma 1 below, we obtain the order O(log3 n/n) magnitude of E(m) for

LMTS by carefully bounding the summation in m over different frequency

ranges through the entire collection. Given the larger bias involving log n, an

irregular form of the Edgeworth expansion is established to show a “slight”

Bartlett correctability in the next section.

4.3 Main Results

Before establishing the validity of Edgeworth expansion and Bartlett correc-

tion, we impose the following assumptions.

Assumptions.

1. {Xt} is a real-valued linear weakly stationary process satisfying

Xt =
∞∑
u=0

auεt−u,

where a0 = 1 and
∑∞

u=0 a
2
u < ∞. The noise process {εt} is a sequence

of Gaussian i.i.d. random variables with E(εt) = 0 and finite known

innovation variance E(ε2t ) = σ2
ε .

2. The spectral density function of {Xt} is given by

f(ω, θ) =
σ2
ε

ω2d
f ∗(ω),
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where d = θ/2 ∈ (0, 1
2
) is the parameter of interest and f ∗(ω) is an even,

positive, continuous function on [−π, π], bounded above and away from

zero. In addition, we assume that the true spectral density (
√
−1 = i),

f(ω) =
1

2π

∞∑
k=−∞

Cov(Xt, Xt+k) exp(−iωk) = f(ω, θ).

The Gaussian assumption is used to deduce bounds for higher-order mo-

ments of m (see Lemma 4.12). This condition rules out distributions supported

on lattice, and implies the Cramér’s condition lim supτ→∞ |E(exp(iτXt))| <∞,

which is necessary to establish a valid Edgeworth expansion establishment. As-

sumption 2 ensures the integrability of the spectral density function and the

existence of a positive definite autocovariance function for {Xt}. By the ap-

proximation ω2d ∼ |1 − exp(−iω)|2d as ω → 0, Assumption 2 can be applied

to ARFIMA models with the spectral density σ2
ε

2π
1

|1−exp(−iω)|2d f̃(ω), as f̃(ω) is

bounded above and away from zero for all ω.

Bartlett correction for Gaussian LMTS

For Gaussian LMTS, the profile EL ratio function for the parameter of

interest θ0 is constructed as

Rn(θ) = max
pj

{
n∏
j=1

npj |
n∑
j=1

pjmj(θ) = 0,
n∑
j=1

pj = 1, pj ≥ 0

}
.

The Lagrange multiplier argument leads to the log-EL ratio statistic as

l(θ) = −2 logRn(θ) = 2
n∑
j=1

log(1 + tmj(θ)), (4.2)

where t is the solution of equation

1

n

n∑
j=1

mj(θ)

1 + tmj(θ)
= 0. (4.3)

To study the Bartlett correction of EL for Gaussian LMTS, we first estab-

lish the stochastic expansion of l(θ0). We begin with Lemma 4.1, which eval-

uates the bias of the estimating equation. For simplicity, define mj ≡ mj(θ0)
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and for k = 2, 3, 4, let

λk = E

(
1

n

n∑
j=1

mk
j

)
and ∆k =

1

n

n∑
j=1

(mk
j − λk). (4.4)

Lemma 4.1 Under Assumptions 1-2, we have

E (m) = O

(
log3 n

n

)
, and Var (m) = O

(
1

n

)
. (4.5)

Unlike the bias in (3.20) of order n−1, the larger bias in (4.5) for LMTS

results from the dependence of periodogram ordinates at frequencies near ori-

gin. However, if the integers j in Fourier frequency ωj = 2πj/n are allowed to

increase at a comparable rate with the sample size, i.e., j/n = j(n)/n ∈ (0, 1],

then the periodogram ordinates are independently chi-squared distributed (see

Lemmas 4.7 and 4.8). Hence, after some tedious calculations, variance of the

estimating function is bounded above by an order n−1 quantity. By apply-

ing Chebyshev’s inequality to (4.5), we have m = Op(n
−1/2). Together with

Lemma 4.12 in the Appendix, we establish the stochastic expansion for the

periodogram-based log-EL ratio,

1

n
l(θ0) =

m2

λ2

− m2∆2

λ2
2

+
2

3

λ3m
3

λ3
2

+
m2∆2

2

λ3
2

+
2

3

m3∆3

λ3
2

− 2
λ3m

3∆2

λ4
2

+
λ2

3m
4

λ5
2

− 1

2

λ4m
4

λ4
2

+Op

(
n−

5
2

)
. (4.6)

The details to derive this formula are given in the proof of Theorem 4.3. Based

on (4.6), the signed root empirical log-likelihood ratio SR = R1 + R2 + R3,

where Rj = Op(n
−j/2), can be derived as follows. If we collect the terms of

order Op(n
−1) in (4.6) and compare them to R2

1, we have

R1 =
m√
λ2

.

If we collect the terms of order Op(n
−3/2) and compare them to 2R1R2, we

have

R2 =
1

3

λ3m
2

λ
5/2
2

− 1

2

m∆2

λ
3/2
2

.
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Finally, if we collect the terms of order Op(n
−2) and compare them to 2R1R3 +

R2
2, we have

R3 =
3

8

m∆2
2

λ
5/2
2

+
1

3

m2∆3

λ
5/2
2

− 5

6

λ3m
2∆2

λ
7/2
2

+
4

9

λ2
3m

3

λ
9/2
2

− 1

4

λ4m
3

λ
7/2
2

.

Using the above Rj forms, Lemma 4.2 gives the asymptotic expansions on the

cumulants of
√
nSR.

Lemma 4.2 Let kj, j = 1, . . . , 4, be the first four cumulants of
√
nSR. The

asymptotic expansion for kj is given by

k1 = k1,1
log3 n√

n
+ k1,2

1√
n

+ k1,3
1

n
+O

(
log6 n

n3/2

)
, (4.7)

k2 = k2,1 + k2,2
log6 n

n
+ k2,3

log3 n

n
+ k2,4

1

n
+O

(
log9 n

n2

)
, (4.8)

k3 = k3,1
1√
n

+ k3,2
1

n
+O

(
log9 n

n3/2

)
, (4.9)

k4 = k4,1
1

n
+O

(
log12 n

n2

)
, (4.10)

where the coefficients in the asymptotic expansion satisfy

k1,1 =
1√
λ2

n

log3 n
cum (m) , (4.11)

k1,2 =
n

3

λ3

λ
5/2
2

ρ11 −
n

2

1

λ
3/2
2

ρ12, (4.12)

k2,2 = −2

3

λ3

λ3
2

n2

log6 n
cum2 (m) ,

k2,3 =
n2

log3 n

(
4

3

λ3

λ3
2

ρ11 −
1

λ2
2

ρ12

)
cum(m)

k2,4 = −n
2

λ2
2

ρ112 + n2 2

3

λ3

λ3
2

ρ111 + n2 7

4

1

λ3
2

ρ2
12 − n2 17

3

λ3

λ4
2

ρ11ρ12

+n2 1

λ3
2

ρ11ρ22 + n2 2

λ3
2

ρ11ρ13 + n2

(
26

9

λ2
3

λ5
2

− 3

2

λ4

λ4
2

)
ρ2

11,

k2,1 = 1, k1,3 = k3,1 = k3,2 = k4,1 = 0,
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and ρuv and ρuvw are defined as

ρuv = cum

(
1

n

n∑
j=1

mu
j ,

1

n

n∑
j=1

mv
j

)
,

ρuvw = cum

(
1

n

n∑
j=1

mu
j ,

1

n

n∑
j=1

mv
j ,

1

n

n∑
j=1

mw
j

)
.

Note that ku,vs are bounded by some constants, for u, v ∈ S4 = {1, 2, 3, 4}.

Then, the cumulants’ expansions (5.5)-(4.10) lead to the coefficients of poly-

nomials in the Edgeworth expansion for
√
nSR. Given the larger bias in (4.5),

the expansion has an irregular form with a decreasing power series of order

log3 n/
√
n instead of order

√
n in the weakly dependent processes (3.14).

Theorem 4.3 Under Assumptions 1-2, the p.d.f. π(x) of
√
nSR admits a

valid Edgeworth expansion

π(x) = φ(x) +
r1(x) log3 n√

n
φ(x) +

r2(x) log6 n

n
φ(x) +O

(
log9 n

n3/2

)
, (4.13)

where

r1(x) =

√
n

log3 n

{
k1x+

1

6
k3(x3 − 3x)

}
,

r2(x) =
n

log6 n

1

2
(k2 − 1 + k2

1)(x2 − 1),

and r1, r2 are bounded above and below.

Given the particular form of Edgeworth expansion in (4.13), calculating

the coverage error of EL is equivalent to calculating the integral of the density

expansion of the signed root decomposition. The decreasing series of power

log3 /
√
n makes the coverage error larger than its conventional counterpart for

i.i.d. data.
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Theorem 4.4 If Assumptions 1-2 hold, then

P (l(θ0) ≤ cα) = 1− α +O

(
log6 n

n

)
.

Theorem 4.4 states that the coverage error of order log6 n/n is larger for

LMTS, which is larger than that for i.i.d. data or weakly dependent time series.

The expectation of the periodogram-based log-EL ratio in this case becomes

E(l(θ0)) = E(
√
nSR)2 +O(n−3/2) =

∫ ∞
−∞

x2π(x) dx+O(n−3/2)

=

∫ ∞
−∞
{x2φ(x) + x2r1(x)φ(x) log3 n/

√
n+ x2r2(x)φ(x) log6 n/n} dx

+O(log9 n/n3/2) = 1 + b log6 n/n+O(log9 n/n3/2),

where b =
∫∞
−∞ x

2r2(x)φ(x) dx. The feature that r2 has no term of degree 4 or

6 prompts us to scale l(θ0) by 1+b log6 n/n for a more accurate approximation.

In contrast to the weakly dependent series, the additional terms k1,1 and k1,2

in (5.5) in LMTS prevent the coverage error from reducing to n−2 via Bartlett

correction. However, this scaling adjustment can remove terms involving k2,1

and k2,2 in (5.6) such that a “slight” Bartlett correction (i.e., from O(log6 n/n)

to O(log3 n/n)) can be still achieved.

Theorem 4.5 Define c∗α = (1 + b log6 n/n)cα. Under Assumptions 1-2, it

follows that

P (l(θ0) ≤ c∗α) = 1− α +O

(
log3 n

n

)
,

where b = k2
1,1 + k2,2, and k1,1, k2,2 are given by (4.11) and (4.12).

In practice, b is unknown, which can be estimated by the Bootstrap method

in Monti (1997) from the data. We mention the procedure for the sake of

completeness. First, for each series, we calculate the normalized periodogram

{In(ωj)/f(ωj, θ)}. Because In(π+λ) = In(π−λ), we can restrict our attention
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to the frequencies ωj for j = 1, 2, . . . , [(n− 1)/2]. Defining T = [(n− 1)/2], we

calculate

yj =
In(ωj)

f(ωj, θ̂)

/
1

T

T∑
l=1

In(ωl)

f(ωl, θ̂)
,

where θ̂ is a consistent estimator of θ. Let FT be the empirical distribution

function that assigns mass T−1 to each yj. A bootstrap sample (ya1 , y
a
2 , . . . , y

a
T )

can be obtained by resampling from FT with replacement. Then, using Ian(ωj) =

yaj f(ωj, θ̂), we get the resampled periodogram Ian(ω1), Ian(ω2), . . . , Ian(ωT ). Us-

ing the resampled periodogram, we compute the periodogram-based log-EL

ratio {l̂(θ̂T )}. The resampling procedure is repeated B times to obtain a new

set {l̂a(θ̂T )}, a = 1, 2, . . . , B. Finally, we estimate the unknown factor b̂ by

1

B

B∑
a=1

l̂a(θ̂T ) = 1 +
b̂ log6 T

T
.

Consequently, the Bartlett-corrected confidence interval is given by{
θ ∈ Θ | l(θ) ≤ χ2

1,1−α

(
1 +

b̂ log6 T

T

)}
.

4.4 Simulation Studies

In this section, we perform Monte Carlo experiments to demonstrate the

Bartlett correction of EL for LMTS models. A simple LMTS model, ARFIMA

(0, d, 0), is used. Also, we compare the performance of the Whittle likelihood

ratio test and Bartlett corrected test, under ARFIMA models. All of the

simulations are conducted using R version 2.15.1.

The ARFIMA (p, d, q) process Xt with memory parameter d is given by

φ(B)Xt = (1−B)−dθ(B)εt, εt
i.i.d.∼ N(0, 1),

where N(0, 1) denotes the standard normal distribution with a mean of zero

and a variance of one. θ(B) = (1− θ1B − · · · − θqBq) and φ(B) = (1− φ1B −

· · · − φpBp).
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Recall that the asymptotic 1 − α confidence interval for d = θ/2 is given

by Iα(d) = {d | l(d) ≤ cα} and the Bartlett-corrected confidence interval is

I
′
α(d) = {d | l(d) ≤ c∗α}. To construct Iα(d) and I

′
α(d), we substitute various

values of d into the log-EL ratio and compare them with the critical value cα.

The simulations are conducted for d0 = 0.1, 0.2, 0.3, 0.4. In Table 4.1, we

compare Eα and E
′
α for sample sizes n = 200, 1, 000 and 1, 500. In each case,

1,000 replications are drawn. In the procedure for Bootstrap sampling, we

adopt the Whittle maximum likelihood estimator as the consistent estimator

and set the resampling replications B to be 500.

We use the coverage error to evaluate the performance of the asymptotic

distribution confidence intervals. Let d0, d[α/2] and d[1−α/2] be the true values

of the parameter, the lower and the upper endpoints of the confidence interval,

respectively. The one- and two-sided coverage errors are defined by

∣∣P{d0 < d[α/2]} − α/2
∣∣+
∣∣P{d0 > d[1−α/2]} − α/2

∣∣ ,
and ∣∣P{(d0 < d[α/2]) ∪ (d0 > d[1−α/2])} − α

∣∣ .
Two-sided coverage error One-sided coverage error

d=0.1 d=0.2 d=0.3 d=0.4 d=0.1 d=0.2 d=0.3 d=0.4
n = 200 n = 200

EL 0.0469 0.0392 0.0302 0.0393 0.0469 0.0392 0.0302 0.0419
Bart. EL 0.0227 0.0169 0.0067 0.0527 0.0227 0.0169 0.0112 0.0717

n = 1, 000 n = 1, 000
EL 0.036 0.01 0.008 0.02 0.036 0.028 0.03 0.02

Bart. EL 0.0223 0.008 0.003 0.023 0.0223 0.024 0.027 0.023
n = 1, 500 n = 1, 500

EL 0.028 0.003 0.006 0.025 0.028 0.007 0.008 0.025
Bart. EL 0.021 0.001 0.002 0.022 0.021 0.007 0.004 0.022

Table 4.1: Coverage errors of EL and Bartlett-corrected EL confidence intervals for
ARFIMA (0, d, 0) models, replications = 1, 000.
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The simulations show that the coverage accuracy of both confidence in-

tervals is higher for larger n, which supports both statistics tending toward a

χ2
1 variate. In addition, except for d = 0.4 and n ≤ 1, 000, Bartlett-corrected

intervals have smaller coverage errors than the non-Bartlett-corrected counter-

parts. Figures 4.3-4.5 present the QQ plot between the log-EL ratio and the

Bartlett-corrected log-EL ratio and the χ2
1 random variable. The closer are the

lines to the 45◦ straight line, the more accurate are the corresponding asymp-

totic distributions. For large n, the asymptotic accuracy of both the EL and

the Bartlett corrected EL are very similar, thus we only show the cases with

small sample sizes. It can be seen that the Bartlett correction does improve

the approximation.
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Figure 4.3: n = 50 and

H0 : d = 0.1.
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Figure 4.4: n = 50 and

H0 : d = 0.2.
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Figure 4.5: n = 25 and

H0 : d = 0.1.

Alternatively, we may use the Whittle likelihood ratio test to construct the

confidence interval, because Hosoya (1997) proved for LMTS that

−2{WL(θ0)−WL(θ̂)} d→ χ2
1,

where θ̂ is a consistent estimator of θ. However, Bartlett correction does not

work for Whittle likelihood ratio statistics in finite sample performance. To

show this, we further compare the coverage errors of the Whittle likelihood

ratio and Bartlett-corrected tests with sizes n = 50, 200 and 500. In calculating

the Bartlett correction factor step, we also adopt the Whittle estimator as the
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consistent estimator, and the Bootstrap iteration is set to 500 times.

Two-sided coverage error One-sided coverage error

d=0.1 d=0.2 d=0.3 d=0.4 d=0.1 d=0.2 d=0.3 d=0.4
n = 200 n = 200

EL 0.011 0.006 0.007 0.019 0.011 0.006 0.007 0.019
Bart. EL 0.034 0.051 0.053 0.057 0.041 0.051 0.053 0.057

n = 1, 000 n = 1, 000
EL 0.003 0.002 0.001 0.012 0.03 0.002 0.003 0.012

Bart. EL 0.007 0.01 0.006 0.015 0.03 0.04 0.044 0.033

Table 4.2: Coverage errors of Whittle and Bartlett-corrected confidence intervals
for ARFIMA (0, d, 0) models, replications = 1, 000.

The simulation results in Table 4.2 show that the Whittle likelihood ratio

converges to a chi-squared random variable as the sample size increases, but,

the Bartlett-corrected coverage error does not converge to zero in general.

However, this technique fails to improve the conventional Whittle likelihood

ratio test in almost all cases. This feature provides our periodogram-based EL

superior in real application.

4.5 Proof of Theorems

Proof of Theorem 4.3. To study Edgeworth expansion of density for signed

root empirical log-likelihood ratio, we must develop a stochastic expansion for

l(θ0). Applying the Taylor expansion to (4.3), we get

1

n

n∑
j=1

mj(1− tmj + (tmj)
2 + · · · ) = 0.

Solving for t, it follows that

t =
m

λ2

− m∆2

λ2
2

+
λ3m

2

λ3
2

+
m∆2

2

λ3
2

− 3
λ3m

2∆2

λ4
2

+ 2
λ2

3m
3

λ5
2

+
m2∆3

λ3
2

− λ4m
3

λ4
2

+Op(n
−2).
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Note that t = Op(n
−1/2). Substituting t into (5.2), we have the stochastic

expansion (4.6). Then, Rjs and asymptotic expansions of kjs are obtained as

discussed in Section 3. The characteristic function of
√
nSR is thus given by

ψn(x) = exp

{
k1(ix) +

1

2
k2(ix)2 +O

(
log9 n

n3/2

)}
= e−

x2

2

{
1 + k1(ix) +

1

2
(k2 − 1 + k2

1)(ix)2

}
+O

(
log9 n

n3/2

)
.

Applying the Fourier inversion formula to ψn(x) =
∫∞
−∞ e

iτxπ(x) dτ , π(x) ad-

mits the Edgeworth expansion (4.13). This completes the proof of Theorem

4.3. �

Proof of Theorem 4.4. From the Edgeworth expansion (4.13) of π(x), we have

P (l(θ0) ≤ cα) = P (nSR2 +Op(n
−3/2) ≤ cα)

=

∫ √cα
−√cα

φ(x) dx+

∫ √cα
−√cα

k1H1(x)φ(x) dx

+

∫ √cα
−√cα

(
1

2
(k2 − 1 + k2

1)H2(x)

)
φ(x) dx+O

(
log9 n

n3/2

)
= 1− α +O

(
log6 n

n

)
,

where Hj(x), j = 1, . . . , 6 are Hermite polynomials (see Hall (1992)). The

order O(log6 n/n) of the error term comes from k2 − 1 + k2
1. This completes

the proof of Theorem 4.4. �

Proof of Theorem 4.5. The proof relies on the Edgeworth expansion of density

for the corrected signed root empirical log-likelihood ratio, i.e., SR∗ = SR(1−
b log6 n

2n
), which requires the asymptotic expansion of the cumulants of

√
nSR∗.

Scaling the log-EL ratio by its mean, we have

l(θ0)/(1 + b log6 n/n) =

{√
nSR(1− b log6 n

2n
)

}2

+Op(n
−3/2)

= (
√
nSR∗)2 +Op(n

−3/2).

Using this equation, we can deduce the asymptotic expansion of k∗j , j =
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1, . . . , 4, which are the first four cumulants of
√
nSR∗,

k∗1 =
k1,1 log3 n√

n
+
k1,2

n1/2
+O

(
log9 n

n3/2

)
, k∗2 = 1−

k2
1,1 log6 n

n
+
k2,3 log3 n

n
+O

(
1

n

)
,

k∗3 =
k3,1√
n

+O

(
log6 n

n3/2

)
, k∗4 =

k4,1

n
+O

(
log12 n

n2

)
.

Thus, the p.d.f. π∗(x) of
√
nSR∗ admits an Edgeworth expansion

π∗(x) = φ(x) +
r∗1(x) log3 n√

n
φ(x) +

r∗2(x) log6 n

n
φ(x) +O

(
log9 n

n3/2

)
,

where

r∗1(x) =

√
n

log3 n

[
k∗1H1(x) +

1

6
k∗3H3(x)

]
,

r∗2(x) =
n

log6 n

[
1

2
(k∗2 − 1 + (k∗1)2)H2(x) + (

k∗4
24

+
k∗1k

∗
3

6
)H4(x) +

(k∗3)2

72
H6(x)

]
.

The coefficients of Hermite polynomials in r∗2(x) satisfy

k∗2 − 1 + (k∗1)2 = (2k1,1k1,2 + k2,3)
log3 n

n
+O

(
1

n

)
,

1

6
k∗1k

∗
3 +

1

24
k∗4 =

k1,1k3,1

6

log3 n

n
+
k4,1

24

1

n
+O

(
log9 n

n3/2

)
,

1

72
(k∗3)2 =

k2
3,1

72

1

n
+O

(
log6 n

n2

)
.

In the Supplementary Materials we show that k3,1 = k4,1 = 0. Hence, 1
6
k∗1k

∗
3 +

1
24
k∗4 and 1

72
(k∗3)2 are bounded by O(log3 n/n). Consequently, after a standard

argument, the coverage probability follows

P (l(θ0) ≤ c∗α) = 1− α +O

(
log3 n

n

)
,

completing the proof of Theorem 4.5. �

Technical Lemmas for Cumulant Calculations

Let δ ∈ (0, 1) and ε > 0 be generic constants. Define the discrete Fourier

transform (DFT) Jn(ωj) as

Jn(ωj) =
1√
2πn

n∑
t=1

Xte
−itωj .
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Note that In(ωj) = Jn(ωj)Jn(ω−j) and Jn(ωj)/
√
f(ωj) is referred as the nor-

malized DFT. To calculate
∑n

j=1 R(In(ωj)/f(ωj)) for some functions R, we

must study the limiting covariance of the normalized DFT for the whole fre-

quency domain. Define Λ = {j ∈ Sn : δn ≤ j ≤ n}, then the ωj in this

region are bounded away from zero. The whole frequency region on the plane

(0, 2π)× (0, 2π) can be partitioned into four complementary regions

Λ1 = {(j, k) : j, k ∈ Λ; j 6= k ; |ωj − ωk| ≤ ε},

Λ2 = {(j, k) : j, k ∈ Λ; ε < |ωj − ωk| < 2π},

Λ3 = {(j, k) : j ∈ Sn, k ∈ Λ; |ωj| ≤ ε} ∪ {(j, k) : k ∈ Sn, j ∈ Λ; |ωk| ≤ ε},

Λ4 = {(j, k) : j, k ∈ Sn; |ωj| ≤ ε; |ωk| ≤ ε; j 6= k}.

Proof of Lemma 4.1. For any constants K and any small δ > 0, the expectation

of m are divided into three regions as

E(m) =
1

n
E

[log logn]∑
j=1

mj +

[δn]∑
j=[log logn]+1

mj +
n∑

j=[δn]+1

mj


≤ K

log1+δ n

n
+
K

n

[δn]∑
j=[log logn]+1

log j

j
log

(
j

n

)

+
K

n

n∑
j=[δn]+1

log n

n
, (4.14)

where [x] is the largest integer that is less than or equals x. For the first term

of (4.14), mj = O(log n) because ∂
∂θ

log f(ωj) ∼ log n, and In(ωj)/f(ωj)− 1 =

O(1) by Lemma 4.9. Given

n∑
j=1

log j

j
=

1

2
log2 n+O

(
log2 n

n

)

and Lemma 4.10, the second term in (4.14) is of order O(log3 n/n). Addition-

ally, using Lemma 4.7, the last term is of order O(log n/n). Summing these
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parts, E(m) = O(log3 n/n). For the variance of m, note that

Var(m) = P1 + P2,

where

P1 =
1

n2

n∑
j=1

Var(mj), P2 =
1

n2

∑
j 6=k

Cov(mj,mk).

Then by Lemmas 4.7 and 4.8,

P1 =
1

n2

n∑
j=1

(
∂

∂θ
log f(ωj))

2

[
E2

(
Jn(ωj)Jn(ω−j)√
f(ωj)f(ω−j)

)
+ E

(
J2
n(ωj)

f(ωj)

)
E

(
J2
n(ω−j)

f(ω−j)

)]

≤ K

n2

[log logn]∑
j=1

log2 n+

[δn]∑
j=[log logn]+1

(log j − log n)2

(
1 +

log j

j

)2

+

n∑
j=[δn]+1

(
1 +O(

log n

n
)

)2
 = O(n−1),

and

P2 =
1

n2

∑
j 6=k

(
∂

∂θ
log f(ωj))(

∂

∂θ
log f(ωk))

[
E

(
Jn(ωj)Jn(ω−k)√
f(ωj)f(ω−k)

)
E

(
Jn(ω−j)Jn(ωk)√
f(ω−j)f(ωk)

)

+E

(
Jn(ωj)Jn(ωk)√
f(ωj)f(ωk)

)
E

(
Jn(ω−j)Jn(ω−k)√
f(ω−j)f(ω−k)

)]
=

1

n2

 ∑
|ωj−ωk|≤ε

+
∑

|ωj−ωk|≥ε

 .
Considering the two parts separately, it follows that

1

n2

∑
|ωj−ωk|≤ε

=
1

n2

 ∑
j,k∈Λ4

+
∑
j,k∈Λ1


≤ K

n2

 ∑
1≤k≤[log logn]≤j≤δn

log n(log j − log n)(
log j

k
)2

+

[δn]∑
j=[log logn]+1

j∑
k=[log logn]

log2 n(
log j

k
)2 + (1− δ)2n2(

log2 n

n2
)


= o(n−1),
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and

1

n2

∑
|ωj−ωk|≥ε

=
1

n2

{ ∑
j,k∈Λ2

+
∑
j,k∈Λ3

}
≤ K

n2


[δn]∑
j=1

(log j − log n)2(1− δ)n(
log2 n

n2
)

+

[δn]∑
k=1

(log k − log n)2(1− δ)n(
log2 n

n2
) + (1− δ)2n2(

log2 n

n2
)


= o(n−1).

Thus, P2 = o(n−1) and Var(m) = P1 + P2 = O(n−1). �

Next we state some technical Lemmas for the cumulant expansions. The

proofs can be found in the Supplementary Materials.

Lemma 4.6

1

n

∫ π

−π

∣∣∣∣sin(nµ/2)

sin(µ/2)

∣∣∣∣ dµ ∼ 1

π

log n

n
as n→∞. (4.15)

Lemma 4.7 For any sequences of integers j = j(n) with j ∈ Λ, we have

E

(
Jn(ωj)Jn(ω−j)√
f(ωj)f(ω−j)

)
= 1 +O

(
log n

n

)
, and E

(
J2
n(ωj)

f(ωj)

)
= O

(
log n

n

)
.

Lemma 4.8 For any two sequences of integers j = j(n) and k = k(n) such

that {j, k} ∈ Λ1 ∪ Λ2 ∪ Λ3, we have

E

(
Jn(ωj)Jn(ω−k)√
f(ωj)f(ω−k)

)
= O

(
log n

n

)
, and E

(
Jn(ωj)Jn(ωk)√
f(ωj)f(ωk)

)
= O

(
log n

n

)
.

Lemmas 4.9 and 4.10 describe the different behavior of the expectation

of a product of DFTs under Fourier frequencies ωj with fixed j and slowly

increasing j, respectively.
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Lemma 4.9 (P.M. Robinson 1995)

For 0 < |d| < 1
2

and any fixed integers j 6= k, bd = 2Γ(1− 2d) sinπd, we have

lim
n→∞

E

(
In(ωj)

f(ωj)

)
=

bd|j|2d

(2π)1−2d

{
4

∫ 1

0

u2d−1(u− 1) sin2(πju) du+
1

d(2d+ 1)

}
,

and

lim
n→∞

E

(
Jn(ωj)Jn(ωk)√
f(ωj)f(ωk)

)
= Pd(j, k),

where

Pd(j, k) =
−2bd |jk|d

(2π)1−2d(j + k)

∫ 1

0

u2d−1{sin(2πju) + sin(2πku)} du.

In particular, if the white noise process is Gaussian and j ± k 6= 0, then

lim
n→∞

E

(
In(ωj)

f(ωj)

)
= 2P 2

d (j, j),

lim
n→∞

Cov

(
In(ωj)

f(ωj)
,
In(ωk)

f(ωk)

)
= P 2

d (j, k) + P 2
d (j,−k).

Lemma 4.10 (P.M. Robinson, 1995)

Under Assumptions 1-2, for sequences of positive integers j, k that satisfy

K log log n < k < j < δn, we have

E

(
Jn(ωj)Jn(ω−j)√
f(ωj)f(ω−j)

)
= 1 +O( log j

j
),

E

(
Jn(ωj)Jn(ωj)√
f(ωj)f(ωj)

)
= O( log j

j
),

E

(
Jn(ωj)Jn(ωk)√
f(ωj)f(ωk)

)
= O( log j

k
),
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E

(
Jn(ωj)Jn(ω−k)√
f(ωj)f(ω−k)

)
= O( log j

k
).

The following Lemma gives the lower bound for the covariance of DFT at

the conjugate frequency in the first case of Lemma 4.10.

Lemma 4.11 Under Assumptions 1-2, for sequences of positive integers j,

satisfying 0 < K log log n < j < δn, we have

E

(
Jn(ωj)Jn(ω−j)√
f(ωj)f(ω−j)

− 1

)
≥ K

1

j
. (4.16)

Remark: The side lobes of the Fejér kernel in the range [2π/n,∞) makes it

difficult to evaluate the exact magnitude of the integral in [2π/n, ωj] when ωj

is not a fixed constant. Using the properties of the Dirichlet kernel, Robinson

(1995) only derived an upper bound for the bias E(In(ωj)/f(ωj))− 1, and the

order O(log3 n/n) in (4.5) is actually an upper bound of the E(m). Using order

j−1 in (4.16), we can find the lower bound O(log2 n/n) for E(m). It follows that

the lower bound of the coverage error is reduced from order Op(log4 n/n) to

Op(log2 n/n) using the Bartlett correction. This argument justifies the slight

Bartlett correction in improving the coverage accuracy even for LMTS.

The following Lemma provides the key order magnitude to derive the

asymptotic expansion of t in Lemma 4.3 and l(θ0) in (4.6).

Lemma 4.12 Under Assumptions 1-2, we have

λk = O(1), ∆k = Op

(
1√
n

)
, for k = 2, 3, 4,

where λk and ∆k are defined in (4.4).

Proof of Lemma 4.12. Under the Gaussian assumption, the cumulants of a

normalized DFT with an order 3 or higher vanish, so it suffices to consider the
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products of second-order cumulants. Together with the cumulant expansion

formula in Brillinger (1981), λk admits the following asymptotic expansion:

λ2 =
1

n

n∑
j=1

[
cum(mj,mj) + cum2(mj)

]
= O(1),

λ3 =
1

n

n∑
j=1

[
cum(mj,mj,mj) + 3cum(mj,mj)cum(mj) + cum3(mj)

]
= O(1),

λ4 =
1

n

n∑
j=1

[cum(mj,mj,mj,mj) + 4cum(mj,mj,mj)cum(mj)

+3cum2(mj,mj) + 6cum(mj,mj)cum2(mj) + cum4(mj)
]

= O(1).

The calculations for the variance of higher moments (i.e. 1
n

∑
jm

k
j , k = 2, 3, 4)

can be handled similarly as in the proof of Lemma 4.1, although the process

is more tedious. �

Proof of Lemma 4.2

Based on Lemmas 4.7 and 4.8, the cumulants of
√
nSR are derived to

establish its Edgeworth expansion. We only derive the first four cumulants

because the higher-order cumulants have smaller orders and can be neglected.

From the definition of cumulants, we have

k1 = cum(
√
n(R1 +R2 +R3)), (4.17)

k2 = cum(nSR2)− cum2(
√
n(R1 +R2 +R3)), (4.18)

k3 = cum(
√
nR1,

√
nR1,

√
nR1) + 3cum(

√
nR1,

√
nR1,

√
nR2)

+O

(
log3 n

n3/2

)
, (4.19)

k4 = cum(
√
nR1,

√
nR1,

√
nR1,

√
nR1)

+4cum(
√
nR1,

√
nR1,

√
nR1,

√
nR2)

+4cum(
√
nR1,

√
nR1,

√
nR1,

√
nR3)

+6cum(
√
nR1,

√
nR1,

√
nR2,

√
nR2) +O

(
log4 n

n2

)
. (4.20)



www.manaraa.com

Chapter 4 Bartlett Correction for EL with Gaussian Long-Memory Time Series 61

Consider k1 in (4.17),

k1 = E(
√
n(R1 +R2 +R3))

= cum

(
m√
λ2

)
+ cum

(
1

3

λ3m
2

λ
5/2
2

− 1

2

m∆2

λ
3/2
2

)
(4.21)

+cum

(
3

8

m∆2
2

λ
5/2
2

+
1

3

m2∆3

λ
5/2
2

− 5

6

λ3m
2∆2

λ
7/2
2

+
4

9

λ2
3m

3

λ
9/2
2

− 1

4

λ4m
3

λ
7/2
2

)
.(4.22)

By Lemma 4.1, the bounds of the terms in (4.21) can be directly derived, i.e.,

cum(m) = O

(
log3 n

n

)
+O

(
n−1
)
,

cum(m2) = cum

(
1

n

n∑
j=1

mj,
1

n

n∑
k=1

mk

)
+ cum2

(
1

n

n∑
j=1

mj

)

= O
(
n−1
)

+O

(
log3 n

n

)2

,

cum(m∆2) = cum

(
1

n

n∑
j=1

mj,
1

n

n∑
k=1

m2
k

)
= O(n−1).

In the Gaussian case, the higher-order cumulant

cum(In(ωj)/f(ωj), In(ωk)/f(ωk), In(ωk)/f(ωk))

can be decomposed into products of the second-order cumulants of normalized

DFT, in which cumulants of an order 3 and higher-order vanish. To be specific,

we have

cum

(
In(ωj)

f(ωj)
,
In(ωk)

f(ωk)
,
In(ωk)

f(ωk)

)
= 2cum2

(
Jn(ωj)√
f(ωj)

,
Jn(ω−k)√
f(ω−k)

)
cum

(
Jn(ωk)√
f(ωk)

,
Jn(ω−k)√
f(ω−k)

)
.

Together with Lemmas 4.7, 4.8, 4.9 and 4.10, the terms in (4.22) are of the
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following orders

cum(m∆2
2) = cum

(
1

n

n∑
i=1

mi,
1

n

n∑
j=1

m2
j ,

1

n

n∑
k=1

m2
k

)

+cum

(
1

n

n∑
j=1

mj

)
cum

(
1

n

n∑
j=1

m2
j ,

1

n

n∑
k=1

m2
k

)

= O

(
log3 n

n2

)
+O

(
1

n2

)
,

cum(m2∆3) = cum

(
1

n

n∑
i=1

mi,
1

n

n∑
j=1

mj,
1

n

n∑
k=1

m3
k

)

+2cum

(
1

n

n∑
j=1

mj

)
cum

(
1

n

n∑
j=1

mj,
1

n

n∑
k=1

m3
k

)

= O

(
log3 n

n2

)
+O

(
1

n2

)
,

and

cum(m2∆2) = cum

(
1

n

n∑
i=1

mi,
1

n

n∑
j=1

mj,
1

n

n∑
k=1

m2
k

)

+2cum

(
1

n

n∑
j=1

mj,
1

n

n∑
k=1

m2
k

)
cum

(
1

n

n∑
j=1

mj

)

= O

(
1

n2

)
+O

(
log3 n

n2

)
,

and

cum(m3) = cum

(
1

n

n∑
i=1

mi,
1

n

n∑
j=1

mj,
1

n

n∑
k=1

mk

)

+3cum

(
1

n

n∑
j=1

mj,
1

n

n∑
k=1

mk

)
cum

(
1

n

n∑
j=1

mj

)
+ cum3

(
1

n

n∑
j=1

mj

)

= O

(
1

n2

)
+O

(
log3 n

n2

)
+O

(
log3 n

n

)3

.

This leads to the asymptotic expansion of k1 in (5.5). The expansion of k2 can
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be computed similarly. For k3 and k4, define

ρ3 =
n∑
j=1

(
∂

∂θ
log f(ωj))

3cum

(
In(ωj)

f(ωj)
,
In(ωj)

f(ωj)
,
In(ωj)

f(ωj)

)
,

ρ4 =
n∑
j=1

(
∂

∂θ
log f(ωj))

4cum

(
In(ωj)

f(ωj)
,
In(ωj)

f(ωj)
,
In(ωj)

f(ωj)
,
In(ωj)

f(ωj)

)
.

Direct calculations give us

cum(
√
nR1,

√
nR1,

√
nR1) =

2

λ
3/2
2

ρ3 + o(n−1),

cum(
√
nR1,

√
nR1,

√
nR2) = −2

3

1

λ
3/2
2

ρ3 + o(n−1).

Substituting the above into (5.9), we have

k3,1 =
√
n

{
2

λ
3/2
2

ρ3 − 3
2

3

1

λ
3/2
2

ρ3

}
= 0.

The calculations for the fourth-order cumulants are similar. Again, direct

calculations give us

cum(
√
nR1,

√
nR1,

√
nR1,

√
nR1) =

1

n2

ρ4

λ2
2

+ o(n−1),

cum(
√
nR1,

√
nR1,

√
nR1,

√
nR2) =

1

2n

λ2
3

λ3
2

− 3

2n2

ρ4

λ2
2

+O

(
log3 n

n3

)
,

cum(
√
nR1,

√
nR1,

√
nR1,

√
nR3) = − 1

12n

λ2
3

λ3
2

+
1

2n2

ρ4

λ2
2

+ o(n−1) +O

(
log3 n

n4

)
,

cum(
√
nR1,

√
nR1,

√
nR2,

√
nR2) = − 5

18n

λ2
3

λ3
2

+
1

2n2

ρ4

λ2
2

+ o(n−1) +O

(
log3 n

n4

)
.

Substituting the above into (4.20), we have

k4,1 =
1

n

ρ4

λ2
2

+ 4
1

2

λ2
3

λ3
2

− 3

2n

ρ4

λ2
2

− 4
1

12

λ2
3

λ3
2

+
1

2n

ρ4

λ2
2

− 6
5

18

λ2
3

λ3
2

+
1

2n

ρ4

λ2
2

= 0.

In conclusion, we have k3,1 = k4,1 = 0. �

Proof of Lemma 4.6. Because the function cosec(µ)−µ−1 is bounded on (0, π
2
),
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it follows that∫ π

−π

∣∣∣∣sin(nµ/2)

sin(µ/2)

∣∣∣∣ dµ
= 4

∫ π

0

∣∣∣∣sin(nµ/2)

µ

∣∣∣∣ dµ+O(1)

= 4

(∫ π

0

sinµ

µ
dµ+

∫ π/n

0

sin(nµ/2)

{
n−1∑
k=1

1

µ+ kπ/n

}
dµ

)
+O(1).

The sum in the braces has lower- and upper-bound n
π

∑n−1
j=1

1
j

and n
π

∑n
j=2

1
j
,

respectively, which equals n
π
[log n + O(1)]. The proof is completed by noting

that, from Brillinger (1981),∫ π/n

0

sin(nµ) dµ = 2/n and

∫ π

0

sinµ

µ
dµ = O(1).

�

Proof of Lemma 4.7. Without loss of generality, assume that ωj ≤ π
2

for

sufficiently large n. Note that

E(I(ωj)−f(ωj)) = E(Jn(ωj)Jn(ω−j)−f(ωj)) =

∫ π

−π
Fn(ωj−µ)(f(µ)−f(ωj)) dµ,

where Fn(µ) is the Fejér kernel Fn(µ) = 1
2πn

sin2(nµ/2)

sin2(µ/2)
. Because f(µ) = 1

µ2d
f ∗(µ),

where f ∗(µ) is a even function bounded above and below from zero, we have

1

f(ωj)

∫ π

−π
Fn(ωj−µ)(f(µ)−f(ωj)) dµ =

K

2πn

∫ π

−π

sin2 n(ωj − µ)/2

sin2(ωj − µ)/2
(f(µ)−f(ωj)) dµ.

The idea is to decompose the range [−π, π] into five parts and establish a

bound for each part,

K

n

∫ π

−π
=
K

n

{∫ ωj−ε

−π
+

∫ ωj− 1
n

ωj−ε
+

∫ ωj+
1
n

ωj− 1
n

+

∫ ωj+ε

ωj+
1
n

+

∫ π

ωj+ε

}
. (4.23)

The first part of (4.23) is bounded by

K

n

∫ ωj−ε

−π
≤ K

n

(
max

µ∈[−π, ωj−ε]

sin2 n(ωj − µ)/2

sin2(ωj − µ)/2

)∫ ωj−ε

−π
|f(µ)− f(ωj)| dµ

≤ K

n

∫ ωj−ε

−π

(∣∣µ−2d
∣∣+ |f(ωj)|

)
dµ = O(n−1).



www.manaraa.com

Chapter 4 Bartlett Correction for EL with Gaussian Long-Memory Time Series 65

The second part is bounded above by

K

n

∫ ωj− 1
n

ωj−ε
≤ K

n

∫ ωj− 1
n

ωj−ε

(
sin2 n(ωj − µ)/2

sin2(ωj − µ)/2
max
µ

∂

∂µ
f(µ)|µ− ωj|

)
dµ

≤ K

n

∫ − 1
n

−ε

sin2(nλ/2)

sin2(λ/2)
|λ| dλ ≤ K

n

∫ − 1
n

−ε

1

λ
dλ = O

(
log n

n

)
,

where the third inequality follows from the Zygmund (1977) that

1

n

sin2(nλ/2)

sin2(λ/2)
= O((nλ2)−1), 0 < |λ| < π.

The third part in (4.23) has an order of

K

n

∫ ωj+
1
n

ωj− 1
n

≤ K

n

(
max

µ∈[ωj− 1
n
, ωj+

1
n

]

∂

∂µ
f(µ)

)∫ ωj+
1
n

ωj− 1
n

(
sin2 n(ωj − µ)/2

sin2(ωj − µ)/2

)
|µ− ωj| dµ

≤ K

n

∫ 1
n

− 1
n

(
sin2 nλ/2

sin2 λ/2

)
|λ| dλ ≤ K

n2

∫ π

−π

sin2(nλ/2)

sin2(λ/2)
dλ = O(n−1).

The last step is obtained from∫ π

−π

[
sin(nλ/2)

sin(λ/2)

]2

dλ = 2πn.

The fourth and fifth terms are bounded by O(log n/n) and K
n

∫ π
ωj+ε

= O (n−1),

respectively. The proof for E(Jn(ωj)Jn(ωj)/
√
f(ωj)f(ωj)) is similar. �

Proof of Lemma 4.8. Without loss of generality, assuming that 0 < j ≤ k < n,

we consider three situations (a) j, k ∈ Λ1, (b) j, k ∈ Λ2 and (c) j, k ∈ Λ3. We

prove that for each case, the covariances of the normalized DFT at different

Fourier frequencies are bounded by a term with order log n/n. First, define

Fj,k =
1√

f(ωj)f(ω−k)

1

2πn

sinn(ωj − µ)/2

sin(ωj − µ)/2

sinn(ωk − µ)/2

sin(ωk − µ)/2
.

For (a), note that by using
∫ π
−π Fj,−k(µ) dµ = 0 for j, k ∈ Λ1, we have

E

(
Jn(ωj)Jn(ωk)√
f(ωj)f(ωk)

)
=

∫ π

−π
[Fj,−k(µ)(f(µ)− f(ωk))] dµ, (4.24)

The integral in (4.24) is divided into seven parts∫ π

−π
=

∫ −ωk−ε
−π

+

∫ −ωk+ε

−ωk−ε
+

∫ − 1
n

−ωk+ε

+

∫ 1
n

− 1
n

+

∫ ωj−ε

1
n

+

∫ ωj+ε

ωj−ε
+

∫ π

ωj+ε

. (4.25)
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The terms
∫ −ωk+ε

−ωk−ε
+
∫ ωj+ε
ωj−ε in (4.25) are bounded by

K

n

{
max

µ∈[−ωk−ε, −ωk+ε]

(
1

|2 sin(µ/2)|2d
| sinn(ωj − µ)/2|
| sin(2πωj − µ)/2|

)(∫ −ωk+ε

−ωk−ε
+

∫ ωj+ε

ωj−ε

)

+ max
µ∈[ωj−ε, ωj+ε]

(
1

|2 sin(µ/2)|2d
| sinn(ωk + µ)/2|
| sin(ωk + µ)/2|

)(∫ −ωk+ε

−ωk−ε
+

∫ ωj+ε

ωj−ε

)}

≤ K

n

∫ π

−π

∣∣∣∣sin(nµ/2)

sin(µ/2)

∣∣∣∣ dµ = O

(
log n

n

)
,

where the last step follows from Lemma 4.6. Also,
∫ −ωk−ε
−π +

∫ π
ωj+ε

are bounded

by O(n−1). Finally,

K

2πn

(∫ 1
n

− 1
n

+

∫ ωj−ε

1
n

+

∫ − 1
n

−ωk+ε

)

≤ K

n

∫ 1
n

− 1
n

(
|µ−2d|+ |ωj|−2d

)
dµ

+

(
max

µ∈[ 1
n
,ωj−ε]

sinn(ωj − µ)/2

sin(ωj − µ)/2

)∫ ωj−ε

1
n

(
|µ−2d|+ |ωj|−2d

)
dµ

+

(
max

µ∈[−ωk+ε,− 1
n

]

sinn(ωk + µ)/2

sin(ωk + µ)/2

)∫ − 1
n

−ωk+ε

(
|µ−2d|+ |ωj|−2d

)
dµ

= O(n−1).

Next, to prove E(Jn(ωj)Jn(ω−k)/
√
f(ωj)f(ω−k)) = O(log n/n) for (a), note

that

E

(
Jn(ωj)Jn(ω−k)√
f(ωj)f(ω−k)

)

=

∫ 2ωj

(ωj+ωk)/2

(f(µ)− f(ωj))Fj,k(µ) dµ

+

∫ (ωj+ωk)/2

ωk/2

(f(µ)− f(ωk))Fj,k(µ) dµ

− (f(ωj)− f(ωk))

∫ (ωj+ωk)/2

ωk/2

Fj,k(µ) dµ

+

(∫ π

2ωj

+

∫ ωk/2

−π

)
(f(µ)− f(ωj))Fj,k(µ) dµ. (4.26)
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For the first part, as∣∣∣∣sinn(ωj − µ)/2

sin(ωj − µ)/2

∣∣∣∣ ≤ ∣∣∣∣ 2

ωj − µ

∣∣∣∣ , 0 < |ωj − µ| < π,

it follows that∫ 2ωj

(ωj+ωk)/2

(f(µ)− f(ωj))Fj,k(µ) dµ

≤ K

2πn

(
max

(ωj+ωk)/2≤µ≤2ωj

∂

∂µ
f(µ)

)∫ 2ωj

(ωj+ωk)/2

∣∣∣∣sinn(ωk − µ)/2

sin(ωk − µ)/2

∣∣∣∣ dµ
≤ K

2πn

∫ π

−π

∣∣∣∣sin(nλ/2)

sin(λ/2)

∣∣∣∣ dλ = O

(
log n

n

)
.

For the second part, we have∫ (ωj+ωk)/2

ωk/2

(f(µ)− f(ωk))Fj,k(µ) dµ = O

(
log n

n

)
.

The third part is bounded by

(ωj − ωk)
(

max
ωk≤µ≤ωj

∂

∂µ
f(µ)

)
K

2πn

∫ (ωj+ωk)/2

ωk/2

(
2

|ωj − µ|
sinn(ωk − µ)/2

sin(ωk − µ)/2

)
dµ

≤ (ωj − ωk)
(

max
ωk/2≤µ≤(ωj+ωk)/2

1

|ωj − µ|

)
K

2πn

∫ (ωj+ωk)/2

ωk/2

∣∣∣∣sinn(ωk − µ)/2

sin(ωk − µ)/2

∣∣∣∣ dµ
= O

(
log n

n

)
.

For the last part, we have∫ ωk/2

−π
(f(µ)− f(ωj))Fj,k(µ) dµ

≤ K

2πn

(
max
−ε≤µ≤ε

sinn(ωj − µ)/2

sin(ωj − µ)/2

sinn(ωk − µ)/2

sin(ωk − µ)/2

)∫ ε

−ε
(|µ|−2d + |ωj|−2d) dµ

= O(n−1)

and ∫ π

2ωj

(f(µ)− f(ωj))Fj,k(µ) dµ = O(n−1).

Thus, for (a), we have

E

(
Jn(ωj)Jn(ωk)√
f(ωj)f(ωk)

)
= O

(
log n

n

)
and E

(
Jn(ωj)Jn(ω−k)√
f(ωj)f(ω−k)

)
= O

(
log n

n

)
.
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To address the argument that b) is similar to the proof of a), we omit the

details. For (c), note that

E

(
Jn(ωj)Jn(ωk)√
f(ωj)f(ωk)

)
≤ Kω2d

k

∫ π

−π

Fjk(µ)

|2 sin(µ/2)|2d
dµ

≤ K

2πn

|2πk|2d

n2d

[∫ −ε
−π

+

∫ ε

−ε
+

∫ ωj−ε

ε

+

∫ ωj+ε

ωj−ε
+

∫ π

ωj+ε

]
.

The second term is bounded by

K

2πn

|2πk|2d

n2d
max
µ∈[−ε,ε]

(
sinn(ωj − µ)/2

sin(ωj − µ)/2

)∫ π

−π

∣∣∣∣∣sinn(2πk
n

+ µ)/2

sin(2πk
n

+ µ)/2

1

|2 sin(µ/2)|2d

∣∣∣∣∣ dµ
= O

(
n−1
)
.

The calculations for the other terms are similar, and the bounds of the terms

are of order log n/n. It is also true that E(Jn(ωj)Jn(ω−k)/
√
f(ωj)f(ω−k)) =

O(log n/n). Combining (a)− (c), Lemma 4.8 follows. �

Proof of Lemma 4.11. Because

E (Jn(ωj)Jn(ω−j)− f(ωj)) =

∫ π

−π
Fn(ω − ωj)(f(ω)− f(ωj)) dω,

where Fn(ω) is the Fejér kernel, it suffices to show that∫ π

−π
Fn(ω − ωj)(f(ω)− f(ωj)) dω ≥

K

j
ω−2d
j . (4.27)

Decompose the integral on the left side of (4.27) into five parts∫ π

−π
=

∫ π

ε

+

∫ ε

2ωj

+

∫ 2ωj

−2ωj

+

∫ −2ωj

−ε
+

∫ −ε
−π

, (4.28)

where for sufficiently large n, 2ωj < ε < π/2. The first term of (4.28) is

bounded below by∫ π

ε

≥ min
ε≤ω≤π

{f(ω)− f(ωj)}
∫ π

ε

1

2πn

sin2 n(ω − ωj)/2
sin2(ω − ωj)/2

dω

≥ K

2πn

∫ π−ωj

ε−ωj

sin2 nω/2

sin2 ω/2
dω =

K

n
.
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For small ε, let δε =
[
ε−2ωj
n

]
, then using the property of the Fejér kernel

(Priestley, 1981), the second term of (4.28) is bounded below by∣∣∣∣∣
∫ ε

2ωj

∣∣∣∣∣ ≥ min
2ωj≤ω≤ε

(
∂

∂ω
f(ω)

)∫ ε

2ωj

1

2πn

sin2 n(ω − ωj)/2
sin2(ω − ωj)/2

(ω − ωj) dω

≥ Kε−1−2d

n

n−1∑
k=0

∫ ωj+δε(k+1)

ωj+δεk

sin2 nω/2

sin2 ω/2
ω dω

≥ K

n

n−1∑
k=0

(
min

ωj+δεk≤ω≤ωj+δε(k+1)
ω

)∫ ωj+δε(k+1)

ωj+δεk

sin2 nω/2

sin2 ω/2
dω

≥
n−1∑
k=0

K

n2
(ωj + δεk) = K

{
ωj
n

+
ε− 2ωj
n

}
≥ K

n
.

Using an identical argument, we have
∫ −ε
−π ≥ K/n and

∫ −2ωj
−ε ≥ K/n. For

∫ 2ωj
−2ωj

in (4.28), we have∫ 2ωj

−2ωj

=

∫ ωj−2π/n

−2ωj

+

∫ ωj+2π/n

ωj−2π/n

+

∫ 2ωj

ωj+2π/n

= L1 + L2 + L3

Note that L3 is bounded below by

min
ωj+2π/n≤ω≤2ωj

(
∂

∂ω
f(ω)

)∫ 2ωj

ωj+2π/n

1

2πn

sin2 n(ω − ωj)/2
sin2(ω − ωj)/2

(ω − ωj) dω

≥ Kω
−(1+2d)
j

∫ ωj

2π/n

1

2πn

sin2 nω/2

sin2 ω/2
ω dω

≥ Kω
−(1+2d)
j

(
min

2π/n≤ω≤ωj
ω

)∫ ωj

2π/n

1

2πn

sin2 nω/2

sin2 ω/2
dω

= Kω
−(1+2d)
j

1

n

∫ ωj

2π/n

1

2πn

sin2 nω/2

sin2 ω/2
dω.

Because the integral in the last equation is bounded above by small ε > 0

from Section 6.1 in Priestley (1981), the lower bound of L3 is no more than

K 1
j
ω−2d
j . By symmetry, it is also true that the lower bound of L1 is no more

than K 1
j
ω−2d
j . Next,

L2 =

(∫ −1/n

−2π/n

+

∫ 1/n

−1/n

+

∫ 2π/n

1/n

)
1

2πn

sin2 nω/2

sin2 ω/2

{
(ω + ωj)

−2d − ω−2d
j

}
dω

= L21 + L22 + L23.
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Note that

L22 ≥ ω−1−2d
j

∫ 1/n

−1/n

1

2πn

sin2 nω/2

sin2 ω/2
ω dω = 0.

For L23,

L23 ≥
{

min
ω∈[1/n,2π/n]

min
ξ∈[ωj ,ωj+ω]

ξ−1−2dω

}∫ 2π/n

1/n

1

2πn

sin2 nω/2

sin2 ω/2
dω ≥ K

1

j
ω−2d
j .

We also have L21 ≥ K 1
j
ω−2d
j . From the above analysis, the division

∫ 2ωj
−2ωj

is

bounded below by K 1
j
ω−2d
j . Then, (4.16) is established by collecting the lower

bounds of each part in (4.28).
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Bartlett Correction for EL with

non-Gaussian Short-Memory

Time Series

In practice, the Gaussian assumption can be too restrictive or even unrealis-

tic. For example, in financial markets, when using an AR(1) model logPt =

φ1 logPt−1 + εt to model the log-price of a security, a skewed t-distribution or

a stable Paretian distribution with heavy-tails is often used to describe the

error process {εt} (see Fama (1965) and Mandelbrot (1963)). It is therefore

meaningful to develop an EL method for statistical inference problems with

non-Gaussian time series. The non-Gaussian distribution of financial data,

seen in Intel’s stock return, can be observed in the density estimator plot in

Figure 5.1. The Leptokurtic shape indicates heavy-tailed data.

It is, however, still unclear whether EL is Bartlett correctable for non-

Gaussian time series. Following the standard argument with i.i.d. data in

Diciccio, Hall and Romano (1991), we must characterize the third- and the

71
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Figure 5.1: Comparison of empirical and normal densities for monthly returns of
Intel’s stock from January 1973 to December 2008. Normal density, shown by the
dashed line, used the sample mean and standard deviation of return.

fourth-order cumulants of the signed root empirical log-likelihood ratio, de-

noted by SR, and show that these cumulants decay to zero at fast rates of n−3

and n−4, respectively. In establishing the formula, the coefficients of Edge-

worth polynomials are functionals of the first four cumulants of SR. If we use

the same periodogram-based EL version as Monti (1997), then higher-order cu-

mulants of SR involve higher-order cumulants of peridogram ordinates for the

underlying process, e.g., logPt in the AR(1) model. For a Gaussian process,

the cumulants of the periodogram ordinates can be decomposed into products

of the second-order cumulants of the discrete Fourier transform (DFT), and

higher-order cumulants of the DFT are negligible. Under these circumstances,

calculations on the higher-order cumulants of SR can be derived, but, this

property no longer holds for non-Gaussian processes. Higher-order cumulants

of the DFT cannot be ignored. To circumvent this difficulty, we show that the

sixth and eighth cumulants of the DFT are of orders n−2 and n−3, and they

vanish in the third- and fourth-order cumulants of SR, respectively. It is also

shown that although the fourth cumulant of DFT with order n−1 accounts for
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the second-order cumulant of SR, with a known variance of innovation, this

non-zero quantity is canceled in the third- and the fourth-order cumulants of

SR. To sum up, the higher-order cumulants of the DFT do not affect the

Bartlett correctability of EL for non-Gaussian dependent processes.

This chapter is organized as follows. Section 5.1 reviews the Bartlett cor-

rection of EL for Gaussian weakly dependent time series. In Section 5.2, we

derive the asymptotic expansion of the signed root empirical log-likelihood

ratio and establish the validity of Edgeworth expansion under non-Gaussian

assumption. Finally, Section 5.3 presents simulation studies demonstrating the

satisfactory finite sample performance of the Bartlett correction of AR models

with non-Gaussian noise. Proofs of the technical results are given in Section

5.4.

5.1 Bartlett Correction for Time Series

As introduced in Sections 2.2 and 3.3, let κr(Jj) be the r-th cumulant of Jj,

and κε,r be the r-th cumulant of εt. The Whittle likelihood, defined by

n∑
j=1

{
log f(ωj, θ) +

In(ωj)

f(ωj, θ)

}
, (5.1)

is an approximation to the Gaussian log-likelihood function. Then, the score

function of the Whittle likelihood mj is the first derivative of (5.1) and can be

written as mj = g(ωj, θ)(In(ωj)/f(ωj, θ) − 1), where g(ω, θ) = ∂
∂θ

log f(ω, θ).

The corresponding Whittle estimator is defined as the solution of
∑n

j=1mj = 0.

Hosoya (1974, 1997) establishes the limit theory for the Whittle estimator for

possible non-Gaussian short-memory processes. However, using the Whittle

estimator to construct confidence regions involves an asymptotic covariance

matrix estimation (see Hosoya (1997)). Using the EL avoids this difficulty.

Based on the periodogram-based Whittle estimating function mj, the profile
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EL function is given by

Rn(θ) = max
pj

{
n∏
j=1

npj |
n∑
j=1

pjmj = 0,
n∑
j=1

pj = 1, pj ≥ 0

}
.

Then, the log-EL ratio for the problem of testing H0 : θ = θ0 versus H1 : θ 6= θ0

becomes

l(θ) = 2
n∑
j=1

Rn(θ). (5.2)

For Gaussian processes, κr(Jj) = 0 for r ≥ 3 such that In(ωj) are asymp-

totically independent and unbiased estimators of f(ωj, θ). Based on this re-

sult, one can show that E(l(θ0)) = 1 + b/n + O(n−2), for some constant b.

The Bartlett correction of EL means dividing l(θ0) by the quantity 1 + b/n,

which scales the statistic to equate the mean of chi-squared distribution more

accurately (see Bartlett (1937)). For this reason, the Bartlett corrected EL

confidence interval is given by

I
′

n,1−α =

{
θ | l(θ) ≤

(
1 +

b

n

)
χ2

1,1−α

}
.

The coverage error defined by Pr(θ0 ∈ I
′
α) − (1 − α) is reduced from order

O(n−1) to o(n−1) for Gaussian SMTS (see Chan and Liu (2010)), and from

O(log6 n/n) to O(log3 n/n) for Gaussian LMTS with a different correction

factor (see Chapter 4).

To establish the Bartlett correctability of EL for non-Gaussian SMTS, we

use the signed root empirical log-likelihood ratio approach proposed by Dicic-

cio, Hall and Romano (1991). If l(θ0)
d→ χ2

k, then we may write l(θ0) = W
′
W ,

where W is asymptotically normal. Expanding a power series in n−1/2 of W ,

i.e. W =
√
nSR+Op(n

−3/2), where SR = R1+R2+R3, where Rj = Op(n
−j/2),

SR is called the signed root empirical log-likelihood ratio statistic and l(θ0) =

(
√
nSR)2+Op(n

−3/2). In particular, the density function π(x) of
√
nSR admits

the Edgeworth expansion

π(x) = φ(x) +
r1(x)φ(x)√

n
+
r2(x)φ(x)

n
+
r3(x)φ(x)

n3/2
+O(n−2), (5.3)
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where rj is a polynomial with a degree of at most 3j and is an odd or even

function based on whether j is odd or even (see Hall (1992)). Here, φ(x) is the

probability density function (p.d.f.) of a standard normal random variable.

In essence, Bartlett correction works for EL, but not in general for bootstrap,

because the fourth- and sixth-order polynomials in r2(x) vanish for EL, and

not in other cases. This is a consequence of the fact that the third and fourth

cumulants of
√
nSR decay to zero with rates of O(n−3/2) and O(n−2), re-

spectively. For Gaussian processes, the cumulants attain these rates because

κr(Jj) = 0 for r ≥ 3, and terms with products of cum(Jj, Jj) and cum(Jj, J−j)

of smaller rates n−1 are canceled in the cumulants expansion (see Chan and

Liu (2010) and Chapter 4). However, for non-Gaussian processes, κr(Jj) is

non-negligible and it is unknown whether terms with non-zero κr(Jj) can be

canceled. Due to the existence of higher order cumulants, orders of the third

and the fourth cumulants of SR may become larger and the associate degrees

4 and 6 terms in r2(x) may be non-vanishing. To deal with these problems, we

need to evaluate the higher-order cumulants of DFT as functionals of higher

order cumulants of innovation and their effects on the third and the fourth

cumulants of SR.

5.2 Main Results

Before establishing the coverage errors of EL and the Bartlett correctability,

we impose some assumptions on the time series under consideration.

3.1 Regularity Conditions (RC).

a. The linear process {Xt} has a representation Xt =
∑∞

j=0 aj(β)εt−j, where

{εt} is an independent innovation process with a known variance of σ2
ε . In

addition, εt has a finite sixteenth-order cumulant, i.e. κε,16 <∞.
∑∞

j=0 |aj(β)|2 <
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∞, where aj(β) = 0 for j < 0 and θ = (β, σ2
ε )
′ ∈ Θ ⊂ R2, where the pa-

rameter space Θ is a compact set.

b. The spectral density function for process {Xt} in a is given by

f(ω, θ) =
σ2
ε

2π
|aβ(ω)|2, for ω ∈ Π = [−π, π],

where aβ(ω) =
∑

j∈Z aj(β)eijω, with i =
√
−1. It is also assumed that

f(ω, θ) has continuous second-order derivatives in domain Π.

c. {Xt} satisfies the Cramér’s condition, i.e. lim supτ→∞ |E(exp(iτXt))| <∞.

Remark on the Assumptions: One important requirement in our assump-

tions is the known variance of innovation processes σ2
ε , that is, for the para-

metric model class of spectral densities for {Xt},

F ≡
{
f(ω, θ) =

σ2
ε

2π
f ∗(ω, β)

}
,

we only consider inference on parameters described by the kernel f ∗(ω, β),

and treat σ2
ε as a nuisance parameter. If σ2

ε is unknown, then the asymptotic

chi-squared distribution of periodogram-based EL may generally fail for non-

Gaussian processes. This phenomenon is also implied in Nordman and Lahiri

(2006). Thus, in the following, we denote θ = β as the parameter of interest.

Condition a requires that the innovation process has a sixteenth-order cumu-

lant, which is stronger than the eighth-order cumulant of εt in Nordman and

Lahiri (2006). In developing the Bartlett correctability of EL with i.i.d. data,

Diccicio, Hall and Romano (1991) assumed sufficiently many moments of the

underlying distribution. The moment condition is necessary when higher or-

der asymptotics of EL are studied. Condition b restricts our discussion within

SMTS. and Condition c is a regular condition to establish the validity of Edge-

worth expansion.

3.2 Edgeworth Expansion
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For SMTS, it is shown in Brillinger (1981) that

E(In(ωj)) = f(ωj, θ0) +
bI(ωj)

n
+ o(n−1),

where bI(ω) = − 1
2π

∑∞
u=−∞ |u|γθ0(u) exp(−iuω) is the bias term. We have

E(m) =
bm
n

+ o(n−1),

where m = 1
n

∑n
j=1 mj and bm = 1

n

∑n
j=1 g(ωj, θ0)f(ωj, θ0)bI(ωj). Let the

higher-order moments and centered moments, respectively, be

λk = E

(
1

n

n∑
j=1

mk
j

)
and ∆k =

1

n

n∑
j=1

mk
j − λk, for k = 2, 3, 4.

To derive the asymptotic expansion of l(θ0), we first establish the orders of

λk and ∆k in the next Lemma, which also provides the order of magnitude to

derive an explicit form of
√
nSR.

Lemma 5.1 Under RC, we have

λk = O(1), and ∆k = Op

(
1√
n

)
, for k = 2, 3, 4.

Proof. The proof is given in the Appendix.

As in Zhang (1996) and Chapter 4, and given Lemma 5.1, expanding l(θ0)

in (5.2) to a term of order Op(n
−3/2) and equating the stochastic expansion to

nSR2 gives us SR = R1 +R2 +R3 +Op(n
−2), where

R1 =
m√
λ2

,

R2 =
1

3

λ3m
2

λ
5/2
2

− 1

2

m∆2

λ
3/2
2

, (5.4)

R3 =
3

8

m∆2
2

λ
5/2
2

+
1

3

m2∆3

λ
5/2
2

− 5

6

λ3m
2∆2

λ
7/2
2

+
4

9

λ2
3m

3

λ
9/2
2

− 1

4

λ4m
3

λ
7/2
2

.

Calculating the first four cumulants of singed root decomposition is equiv-

alent to calculating the higher-order cumulants of the Whittle-type score func-

tion. The next lemma provides a general rule to deal with such problems for
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non-Gaussian SMTS. The idea is to decompose the higher-order cumulants of

the periodogram-based score function into products of the higher-order cumu-

lants of the DFT. This result shows that the term with κε,4 is significant, even

though it was negligible for Gaussian processes.

Lemma 5.2 Under RC, for partition s ⊂ {1, . . . , 8}, and j 6= k ∈ {1, . . . , n},

we have

1

n2

∑
j 6=k

∏
s

cum{m11 , . . . ,mν1 ; ν1 ∈ s1} · · · cum{m1p , . . . ,mνp ; νp ∈ sp}

=
C

n

κε,4
σ4
ε

∫∫
Π2

g(ω, θ)ag(λ, θ)b dω dλ+O(n−2),

for 11, . . . , νp ∈ {j, k}, and the product is over all indecomposable partitions

s = s1 ∪ · · · ∪ sp, where C is a generic constant corresponding to the cumulant

decomposition of score functions mj and mk. For each partition, νp ≥ 2, νi are

not all equal, and

a =

p∑
i=1

ν∑
α=1

1{αi=j} and b =

p∑
i=1

ν∑
α=1

1{αi=k},

where 1A = 1 for true event A and 1A = 0 otherwise.

Proof. The proof is given in Section 5.4.

Based on the formula for SR in (5.4) and the higher-order cumulants rule

of periodogram-based score functions in Lemma 5.2, we obtain the cumulants’

expansions of
√
nSR in the next Lemma, where the detailed calculations are

given in the Appendix. Using these established cumulants’ expansions, the

standard procedure (see Hall (1992)) leads to the Edgeworth expansion for

non-Gaussian SMTS.
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Lemma 5.3 Let κj(
√
nSR), j = 1, 2, 3, 4, be the first four cumulants of the

signed root empirical log-likelihood ratio. Under RC and (5.4), κj(
√
nSR) has

the asymptotic expansion

κ1(
√
nSR) =

k1,1√
n

+
k1,2

n
+
k1,3

n3/2
+O(n−2),

κ2(
√
nSR) = 1 +

k2,1√
n

+
k2,2

n
+
k2,3

n3/2
+O(n−2),

κ3(
√
nSR) = O(n−3/2), κ4(

√
nSR) = O(n−2),

where

k1,1 =
1

λ
1/2
2

1

2π

∫
Π

bI(ω)g(ω, θ)f(ω, θ)−1 dω − 2

3

λ3

λ
3/2
2

, (5.5)

k2,2 = 4
λ2

3

λ3
2

− 29

18

λ4

λ2
2

+
26

9

λ2λ4

λ2
3

− κε,4
σ4
ε

, (5.6)

and k1,2 = k1,3 = k2,1 = k2,3 = 0.

Proof. The proof is given in Section 5.4.

Under condition RC, the Edgeworth polynomials r1(x) and r2(x) in (5.3)

admit the forms

r1(x) =
√
n{κ1(

√
nSR)x+

1

6
κ3(
√
nSR)(x3 − 3x)} = k1,1x+O(n−1),

r2(x) =
n

2
{κ2(
√
nSR)− 1 + κ1(

√
nSR)2}{x2 − 1}

=
1

2
(k2

1,1 + k2,2)(x2 − 1) +O(n−1),

and r3(x) is an odd polynomial with a degree of no more than 9. For non-

Gaussian SMTS, r1(x) and r2(x) are different from their Gaussian counterparts

because the terms k1,1 and k2,2 in (5.5) and (5.6) involve non-zero κε,4. In

particular, it is proven that with known σ2
ε , terms with κε,4 can be canceled in

κ3(
√
nSR) and κ4(

√
nSR), and terms with κε,r are of orders n−2 when r is odd,
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or r is even and larger than 6. Therefore, κ3(
√
nSR) and κ4(

√
nSR) involving

κε,r for r ≥ 3 decay fast enough to ensure the degree 2 of r2(x). With the

particular form of r2(x), where fourth- and sixth-degrees of the polynomials

vanish, the coverage error of EL is of an order n−1, which can be reduced to

n−2 by the Bartlett correction technique.

Theorem 5.4 Under RC, based on the Edgeworth expansion (5.3), for suffi-

ciently large n,

P (l(θ0) ≤ χ2
1,1−α) = 1− α +O(n−1).

Proof. The procedure is the same as that in Chapter 4 and the proof is

omitted.

Along with the discussion on the Bartlett correctability of EL, the Edge-

worth expansion for non-Gaussian processes admits a particular form (5.3), in

which r2(x) is a degree 2 polynomial, such that we can scale the chi-squared

critical value by the mean of the log-EL ratio to achieve better accuracy. In ad-

dition, it should be noted that the Bartlett correction factor for a non-Gaussian

process is no longer the same as that for a Gaussian process.

Theorem 5.5 Under RC, EL is Bartlett correctable,

P (l(θ0) ≤ (1 + b/n)χ2
1,1−α) = 1− α +O(n−2),

where b = k2
1,1 + k2,2, and k1,1, k2,2 are given by (5.5) and (5.6).

Proof. Based on the cumulant expansions of Lemma 5.3, we have

E(l(θ0)) = E(nSR2) = κ2(
√
nSR) + κ1(

√
nSR)2 = 1 +

k2,2 + k1,1

n
+O(n−2).

As introduced in Section 2, the mean of l(θ0)/(1 + b/n) approximates more

accurately to the mean of a chi-squared random variable with 1 degree of
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freedom. Because dividing l(θ0) by 1 + b/n is equivalent to multiplying
√
nSR

by 1− b/2n, we use the conventional approach to derive the coverage error of

the corrected statistic
√
nSR(1−b/2n). For the Bartlett-corrected signed root

empirical log-likelihood ratio SR∗ = SR(1− b/2n), it can be shown that

κ1(
√
nSR∗) =

k1,1√
n
−
k3

1,1 + k1,1k2,2

2n3/2
+O(n−2),

κ2(
√
nSR∗) = 1−

k2
1,1

n
+O(n−2).

In this case, the Edgeworth expansion of the p.d.f. π∗(x) of
√
nSR∗ is

π∗(x) = φ(x) +
r∗1(x)φ(x)√

n
+
r∗2(x)φ(x)

n
+
r∗3(x)φ(x)

n3/2
+O(n−2)

= φ(x) + {κ1(
√
nSR∗) +

1

6
κ3(
√
nSR∗)(x3 − 3x)}φ(x)

+
1

2
{κ2(
√
nSR∗)− 1 + κ1(

√
nSR∗)2}(x2 − 1)φ(x)

+
r∗3(x)φ(x)

n3/2
+O(n−2).

Here, k2(
√
nSR∗) − 1 + k1(

√
nSR∗)2 = 1 − k21,1

n
− 1 +

k21,1
n

= 0, so r∗2(x) is of

order n−1. Applying the preceding Edgeworth expansion gives us

P (l(θ0) ≤ (1 + b/n)χ2
1,1−α) = P (nSR2 ≤ (1 + b/n)χ2

1,1−α)

=

∫ √χ2
1,1−α

−
√
χ2
1,1−α

φ(x) dx+

∫ √χ2
1,1−α

−
√
χ2
1,1−α

{
r∗1(x)√
n

+
r∗2(x)

n
+
r∗3(x)

n3/2

}
φ(x) dx+O(n−2)

= 1− α +O(n−2).

Integrals of the orders n−1/2 and n−3/2 equal zero due to the oddness of poly-

nomials r∗1(x) and r∗3(x).

5.3 Simulation Study

In this section, an Monte Carlo simulation is conducted to assess the finite sam-

ple performance of Bartlett correctability in improving the coverage accuracy
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of an EL confidence interval for non-Gaussian SMTS. Simple AR(1) models

are used with innovation processes following non-Gaussian distribution: t5, t8,

Exp(1) and χ2
5. All of the simulations are carried out in R version 2.15.2. We

consider the AR(1) model

(1− φB)Xt = εt, εt
i.i.d.∼ (0, σ2

ε ),

where B is the back-shift operator, i.e., BXt = Xt−1, and εt has a mean of zero

and a finite known variance of σ2
ε . Note that σ2

ε differs according to different

noise generation mechanisms. The true values for the AR parameter φ are 0.3

and 0.6. Let φ0, φα/2 and φ1−α/2 be the true values of the AR parameter, the

lower and the upper endpoints of the confidence interval, respectively. In Table

5.1, we study the coverage error of the 95% confidence interval (i.e. α = 0.05)

∣∣P{(φ0 < φ[α/2]) ∪ (φ0 > φ[1−α/2])} − α
∣∣ ,

for different sample sizes n = 200, 400, 600, 800. In each case, 1,000 replica-

tions are drawn. To calculate the critical value of Bartlett-corrected EL, the

Bartlett correction factor 1+b/n is approximated using the Bootstrap method.

The detailed procedure is the same as Monti (1997). In the Bootstrap sam-

pling, the Whittle maximum likelihood estimator is adopted as a consistent

estimator and the resampling replication B is set to be 500.

Table 5.1 shows that Bartlett correction significantly reduces the coverage

error for each white noise distribution. As the sample size increases, the cover-

age error for both the EL confidence interval and Bartlett-corrected confidence

interval decreases. Even for the possible heavy-tailed distribution t5 with ex-

cess kurtosis 6, Bartlett correction successfully improves the coverage accuracy

of the EL confidence intervals.
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AR(1) Model
φ = 0.3 φ = 0.6

n t5 t8 Exp(1) χ2
5 t5 t8 Exp(1) χ2

5

200 EL 0.011 0.021 0.028 0.015 0.04 0.081 0.012 0.042
Bart. EL 0.001 0.02 0.019 0.01 0.025 0.061 0.009 0.016

400 EL 0.044 0.035 0.019 0.006 0.016 0.029 0.013 0.021
Bart. EL 0.034 0.031 0.014 0.003 0.009 0.019 0.011 0.015

600 EL 0.034 0.028 0.01 0.004 0.011 0.018 0.014 0.011
Bart. EL 0.03 0.024 0.006 0.002 0.004 0.014 0.005 0.005

800 EL 0.021 0.019 0.002 0.002 0.015 0.004 0.004 0.007
Bart. EL 0.017 0.014 0.001 0.001 0.01 0.002 0.003 0.004

Table 5.1: Coverage errors of confidence intervals for AR(1) models, replications =
1, 000.

5.4 Lemmas and Proofs

In the following, let κ(j, k) = Cov(Jj, Jk), κ(j, k, l,m) = cum(Jj, Jk, Jl, Jm)

and κ with different indices as higher-order cumulants of the DFT. For exam-

ple, κ(j,−j, j,−j, k,−k, k,−k) denotes the eighth-order cumulant of Jj and

Jk; κr(Jj) denotes the r-th cumulant of Jj.

Proof of Lemma 5.2:

To illustrate the proof, consider specific examples where sp = 4, a = 2 and

b = 2. There are four possibilities,

1

n2

∑
j 6=k

cum(mj,mj,mk,mk),
1

n2

∑
j 6=k

cum2(mj,mk)

1

n2

∑
j 6=k

cum(mj)cum(mj,mk,mk),

1

n2

∑
j 6=k

cum(mj)cum(mk)cum(mj,mk). (5.7)
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For the first term in (5.7), we have

1

n2

∑
j 6=k

cum(mj,mj,mk,mk)

=
1

n2

∑
j 6=k

g(ωj, θ)
2g(ωk, θ)

2

f(ωj, θ)2f(ωk, θ)2
cum(In(ωj), In(ωj), In(ωk), In(ωk)). (5.8)

Using the cumulant decomposition principle in Brillinger (1981),

cum(In(ωj), In(ωj), In(ωk), In(ωk)) =
8∑

ν :p=1

p∏
j=1

cum{Jkj ; kj ∈ νj},

where the summation is taken over all indecomposable partitions ν=ν1 ∪ · · · ∪

νp, p = 1, . . . , 8. By the decomposition of the cumulants’ principle introduced

in Brillinger (1981), we first need to consider the following partitions, where

in each partition, the DFTs are taken at conjugate frequencies;

p = 1, (j, j,−j,−j, k, k,−k,−k),

p = 2, (j,−j) ∪ (j,−j, k, k,−k,−k),

(j,−j, k,−k) ∪ (j,−j, k,−k),

p = 3, (j,−j) ∪ (k,−k) ∪ (j,−j, k,−k).

(5.9)
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For the partition p = 1 in (5.9), under RC, it follows that

κ(j,−j, j,−j, k,−k, k,−k)

=
κε,8

(2πn)4

n∑
t1,...,t4=1

n∑
s1,...,s4=1

2∏
α=1

4∏
β=3

cos(tα − sα)ωj cos(tβ − sβ)ωk

×
∞∑

p=−max(t1,...,s4)

4∏
l=1

atl+pasl+p

=
κε,8

(2πn)4

n−1∑
r1,...,r4=−(n−1)

2∏
α=1

4∏
β=3

cos rαωj cos rβωk

×
∑

s1∈Sr1 ,...,s4∈Sr4

∞∑
p=−max(s1+r1,...,s4+r4)

4∏
l=1

ap+sl+rlap+sl

=
κε,8

(2πn)4

n−1∑
r1,...,r4=−(n−1)

2∏
α=1

4∏
β=3

cos rαωj cos rβωk
∑

s1∈Sr1 ,...,s4∈Sr4

∞∑
p=−∞

4∏
l=1

ap+sl+rlap+sl

=
κε,8

(2πn)4

n−1∑
r1,...,r4=−(n−1)

2∏
α=1

4∏
β=3

cos rαωj cos rβωk

×
∑

s1∈Sr1 ,...,s4∈Sr4

∞∑
q=−∞

aq+r1aq

4∏
l′=2

aq+r
l
′+s

l
′−s1aq+sl′−s1 ,

where aj = 0 for j < 0, Sr = {1, . . . , n− r} for r ≥ 0 and Sr = {1− r, . . . , n}

for r ≤ 0. Denoting ui = si+1 − s1 for i = 1, 2, 3, using

γθ(u) = Cov (Xt, Xt+u) = Cov(
∞∑
j=0

ajεt−j,
∞∑
k=0

akεt+u−k) =
∞∑
j=0

ajaj+uσ
2
ε ,

and Cesaro averages, we have

1

n4

∑
s1,...,s4

∞∑
q=−∞

aq+r1aq

4∏
l′=2

aq+r
l
′+s

l
′−s1aq+sl′−s1

=
1

n3

{∑
q

(1− |r1|
n

)aq+r1aq

}{
3∏
l=1

∑
ul

(1− |rl+1|
n

)aq+ul+rl+1
aq+ul

}

=

∏4
l=1 γθ(rl)

n3σ8
ε

+O(n−4).

Therefore, by f(ω, θ) = 1
2π

∑∞
u=−∞ γθ(u) cos(uω), we have

κ(j,−j, j,−j, k,−k, k,−k) =
κε,8
n3σ8

ε

f(ωj, θ)
2f(ωk, θ)

2 +O(n−4).
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Applying a similar procedure to κ(j,−j, k,−k) and κ(j,−j, j,−j, k,−k) in

p = 2 and p = 3 in (5.9), it follows that

κ(j,−j, k,−k) =
κε,4
nσ4

ε

f(ωj, θ)f(ωk, θ) +O(n−3), (5.10)

and

κ(j,−j, j,−j, k,−k) =
κε,6
n2σ6

ε

f(ωj, θ)
2f(ωk, θ) +O(n−3).

It should be noted that the order O(n−1) of κ(j,−j, k,−k) is larger than the or-

dersO(n−2) andO(n−3) of κ(j,−j, j,−j, k,−k) and κ(j,−j, j,−j, k,−k, k,−k),

respectively. By this property, the partition problem of fourth order peri-

odogram cumulants is simplified. In this case, we only need to consider the par-

tition product of the second-order cumulant of the DFT κ2(Jj) and at most one

fourth-order cumulant of the DFT at different frequencies, i.e. κ(j,−j, k,−k).

Also for partitions ν
′
=ν \(5.9),

∑
j 6=k

8∑
ν

′
:p=1

p∏
j=1

cum{Jkj ; kj ∈ νj} = O(n).

Hence, using (5.10), the fact that κ(j,−j) = f(ωj, θ) + O(n−1), and the de-

composition formula in Brillinger (1981), it follows that

cum(In(ωj), In(ωj), In(ωk), In(ωk)) = 4κ(j,−j)κ(k,−k)κ(j,−j, k,−k) +O(n−2)

=
4κε,4
nσ4

ε

f(ωj, θ)
2f(ωk, θ)

2 +O(n−2). (5.11)

Substituting (5.11) into (5.8), we have

1

n2

∑
j 6=k

cum(mj,mj,mk,mk) (5.12)

=
1

n3

4κε,4
σ4
ε

∑
j 6=k

g(ωj, θ)
2g(ωk, θ)

2 +O(n−2)

=
1

n

κε,4
π2σ4

ε

∫∫
Π2

g(ω, θ)2g(λ, θ)2 dω dλ+O(n−2). (5.13)
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For the second term in (5.7), applying (5.10) to

cum(mj,mk)

=
g(ωj, θ)g(ωk, θ)

f(ωj, θ)f(ωk, θ)
cum(In(ωj), In(ωk))

=
g(ωj, θ)g(ωk, θ)

f(ωj, θ)f(ωk, θ)
[κ(j,−k)κ(−j, k) + κ(j, k)κ(−j,−k) + κ(j,−j, k,−k)]

=
g(ωj, θ)g(ωk, θ)

f(ωj, θ)f(ωk, θ)

κε,4
nσ4

ε

+O(n−2),

we have

1

n2

∑
j 6=k

cum2(mj,mk) =
1

n2

κ2
ε,4

σ8
ε

∫∫
Π2

g(ω, θ)2g(λ, θ)2 dω dλ+O(n−3). (5.14)

Given that cum(mj) = O(n−1) and cum(mj,mk,mk) = O(n−1), we have

1

n2

∑
j 6=k

cum(mj)cum(mj,mk,mk) = O(n−2). (5.15)

Similarly, because cum(mj,mk) = O(n−1), we have

1

n2

∑
j 6=k

cum(mj)cum(mk)cum(mj,mk) = O(n−3). (5.16)

Combining formulas (5.12), (5.14), (5.15) and (5.16), it is concluded that for

a = 2 and b = 2,

1

n2

∑
j 6=k

cum(m11 , . . . ,ms1) · · · cum(m1p , . . . ,msp)

= C
κε,4
nσ4

ε

∫∫
Π2

g(ω, θ)2g(λ, θ)2 dω, dλ+O(n−2).

�

Proof of Lemma 5.1:

First, we show an important formula (5.18) for the cumulants of the DFT

at conjugate frequencies, which are widely used in the following proof. Using

the Kolmogorov’s formula (2π)−1
∫

Π
log f(ω, θ) dω = log(σ2

ε/(2π)), and the fact
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that log f(ω, θ) is twice differentiable for θ ∈ Θ, the true value θ0 with known

variance σ2
ε is determined by the equation∫

Π

∂

∂θ
log f(ω, θ0) dω = 0. (5.17)

By the same argument of κ(j,−j, j,−j, k,−k, k,−k) in Lemma 5.2, equation

(5.17) gives a set of cumulants’ equations of the DFT at the conjugate fre-

quencies,∣∣∣∣κp(Jj)− κε,p
np/2−1σpε

f(ωj, θ0)p/2
∣∣∣∣ = o(1), for p = 2, 4, 6, 8. (5.18)

In particular, κ2(Jj) = f(ωj, θ0) + O(n−1). We only show the proof for λ4

because cases for λ2 and λ3 can be derived similarly. For λ4, we argue that

λ4 =
1

n

n∑
j=1

E(m4
j) =

9

2π

∫
Π

g(ω, θ)4 dω+
1

n

(c2,2,4 + 6)κε,4
2πσ4

ε

∫
Π

g(ω, θ)4 dω+O(n−2),

(5.19)

where c2,2,4 denotes the number of combinations with respect to κ2(Jj)
2κ4(Jj).

To see this,

λ4 =
1

n

n∑
j=1

[cum(mj,mj,mj,mj) + 3cum2(mj,mj) + 4cum(mj)cum(mj,mj,mj)

+6cum2(mj)cum(mj,mj) + cum4(mj)]. (5.20)

Because cum(mj) = O(n−1) and cum(mj,mj,mj) = O(1), then

n−1

n∑
j=1

cum(mj,mj,mj)cum(mj)

is of order O(n−1), which is smaller than O(1) of 1
n

∑n
j=1 cum(mj,mj,mj,mj)

as shown below. Similarly, the other two terms 1
n

∑n
j=1 cum2(mj)cum(mj,mj)

and 1
n

∑n
j=1 cum2(mj)cum(mj,mj) have even smaller orders, so we do not con-

sider them in the expression of λ4. In the calculation of Var(∆r), terms with

an order smaller than O(n−2) are not explicitly written. For the first term in
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(5.20), as

1

n

n∑
j=1

cum(mj,mj,mj,mj)

=
1

n

n∑
j=1

g(ωj, θ)
4

f(ωj, θ)4
cum{In(ωj), In(ωj), In(ωj), In(ωj)}, (5.21)

and

cum{In(ωj), In(ωj), In(ωj), In(ωj)}

= κ8(Jj) + c4,4κ4(Jj)
2 + c2,6κ2(Jj)κ6(Jj)

+c2,2,4κ2(Jj)
2κ4(Jj) + 6κ2(Jj)

4, (5.22)

where c4,4 and c2,6 are number of combinations corresponding to the κ4(Jj)
2,

κ2(Jj)κ6(Jj), together with (5.18), (5.22) becomes

κε,8
n3σ8

ε

f(ωj , θ)
4+

c4,4κ
2
ε,4

n2σ8
ε

f(ωj , θ)
4+

c2,6κε,6
n2σ6

ε

f(ωj , θ)
4+

c2,2,4κε,4
nσ4

ε

f(ωj , θ)
4+6f(ωj , θ)

4+o(1).

Finally, substituting the above formula for (5.21), we have

1

n

n∑
j=1

cum(mj,mj,mj,mj) =
3

π

∫
Π

g(ω, θ)4 dω+
1

n

c2,2,4κε,4
2πσ4

ε

∫
Π

g(ω, θ)4 dω+O(n−2).

(5.23)

For the other term involving cum(mj,mj) in (5.20), we have

3

n

n∑
j=1

cum2(mj,mj) =
3

n

n∑
j=1

g(ωj, θ)
4

f(ωj, θ)4
{κ4

2(Jj) + 2κ4(Jj)κ
2
2(Jj) +Rn(j)},

where Rn(j) denotes the residual terms with non-conjugate frequencies. Hence,

because
∑

j Rn(j) = o(1), it follows that

3

n

n∑
j=1

cum2(mj,mj) =
3

2π

∫
Π

g(ω, θ)4 dω +
1

n

3κε,4
πσ4

ε

∫
Π

g(ω, θ)4 dω + o(n−1).

(5.24)

Combining (5.23) and (5.24), equation (5.19) follows.
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Similar to the argument of λ4, we conclude that

λ2 =
1

2π

∫
Π

g(ω, θ)2 dω +O(n−1), (5.25)

λ3 =
1

π

∫
Π

g(ω, θ)3 dω +O(n−1). (5.26)

Next, we consider the centered higher-order moments. For ∆2,

Var(∆2) =
1

n2

∑
j

∑
k

[cum(mj,mj,mk,mk) + 2cum2(mj,mk)] +O(n−2).

Note that by applying (5.12) in Lemma 5.2 and (5.23) to the first term, we

have

1

n2

∑
j

∑
k

cum(mj,mj,mk,mk)

=
1

n2

∑
j

cum(mj,mj,mj,mj) +
1

n2

∑
j 6=k

cum(mj,mj,mk,mk)

=
3

nπ

∫
Π

g(ω, θ)4 dω +
1

n

4κε, 4

(2π)2σ4
ε

∫∫
Π2

g(ω, θ)2g(λ, θ)2 dω dλ

+O(n−2), (5.27)

where the second equality is derived from the results of (5.23) and (5.12).

It is also true that

2

n2

∑
j

∑
k

cum2(mj,mk) =
1

nπ

∫
Π

g(ω, θ)4 dω +O(n−2). (5.28)

Combing (5.27) and (5.28), with (5.25) and (5.19), it is concluded that

Var(∆2) =
1

n

4

π

∫
Π

g(ω, θ)4 dω +
1

n

4κε,4
σ4
ε

1

(2π)2

(∫
Π

g(ω, θ)2 dω

)2

+O(n−2)

=
1

n

8

9
λ4 +

1

n

4κε,4
σ4
ε

λ2
2 +O(n−2).

Next, we prove that ∆3 = Op(n
−1/2).

Var(∆3) =
1

n2

n∑
j=1

cum(m3
j ,m

3
j) +

1

n2

∑
j 6=k

cum(m3
j ,m

3
k). (5.29)
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For the first term of the score function at the same frequencies in (5.29), we

have

1

n2

n∑
j=1

cum(m3
j ,m

3
j) =

1

n2
[cum(mj, . . . ,mj︸ ︷︷ ︸

6

)

+15cum(mj,mj)cum(mj,mj,mj,mj)

+9cum2(mj,mj,mj) + 15cum3(mj,mj)] +O(n−2).

Because

1

n2

∑
j

cum(mj, . . . ,mj︸ ︷︷ ︸
6

) =
1

n2

∑
j

g(ωj, θ)
6f(ωj, θ)

−6cum(In(ωj), . . . , In(ωj)︸ ︷︷ ︸
6

)

=
c2,2,2,2,2,2

2πn

∫
Π

g(ω, θ)6 dω +O(n−2),

where c2,2,2,2,2,2 denotes the number of combination corresponding to κ2(Jj)
6.

By tedious calculation, we have

15

n2

∑
j

cum(mj,mj)cum(mj,mj,mj,mj) =
45

πn

∫
Π

g(ω, θ)6 dω +O(n−2),

9

n2

∑
j

cum2(mj,mj,mj) =
18

πn

∫
Π

g(ω, θ)6 dω +O(n−2),

and
15

n2

∑
j

cum3(mj,mj) =
15

2πn

∫
Π

g(ω, θ)6 dω +O(n−2).

Summing up these equations, we have

1

n2

n∑
j=1

cum(m3
j ,m

3
j) =

c2,2,2,2,2,2 + 141

2πn

∫
Π

g(ω, θ)6 dω +O(n−2).

For the second term of the score function at different frequencies in (5.29),

we have

1

n2

∑
j 6=k

cum(m3
j ,m

3
k)

=
1

n2

∑
j 6=k

[cum(mj,mj,mj,mk,mk,mk)

+3cum(mj,mj)cum(mj,mk,mk,mk) + 3cum(mk,mk)cum(mj,mj,mj,mk)

+9cum(mj,mj)cum(mk,mk)cum(mj,mk) + 6cum3(mj,mk)]. (5.30)



www.manaraa.com

Chapter 5 Bartlett Correction for EL with non-Gaussian Short-Memory Time Series 92

Given that

1

n2

∑
j 6=k

cum(mj,mj,mj,mk,mk,mk)

=
1

n3

c2,2,2,2,4κε,4
σ4
ε

∑
j 6=k

g(ωj, θ)
3g(ωk, θ)

3 +O(n−2),

3

n2

∑
j 6=k

cum(mj,mj)cum(mj,mk,mk,mk)

=
1

n3

18κε,4
σ4
ε

∑
j 6=k

g(ωj, θ)
3g(ωk, θ)

3 +O(n−2),

and

9

n2

∑
j 6=k

cum(mj,mj)cum(mk,mk)cum(mj,mk)

=
1

n3

9κε,4
σ4
ε

∑
j 6=k

g(ωj, θ)
3g(ωk, θ)

3 +O(n−2),

substituting these equalities into (5.30), we have

1

n2

∑
j 6=k

cum(m3
j ,m

3
k) =

1

n3

(c2,2,2,2,4 + 45)κε,4
σ4
ε

∑
j 6=k

g(ωj, θ)
3g(ωk, θ)

3 +O(n−2).

Next, we prove that

∆4 =
1

n

n∑
j=1

m4
j − E

(
1

n

n∑
j=1

m4
j

)
= Op(n

−1/2).

Because

Var(∆4) =
1

n2

∑
j

Var(m4
j) +

1

n2

∑
j 6=k

Cov(m4
j ,m

4
k),

we consider the two terms on the right side individually. For the first term,

we have

1

n

n∑
j=1

Var
(
m4
j

)
=

1

n

n∑
j=1

[cum(mj, . . . ,mj︸ ︷︷ ︸
8

) + 28cum(mj,mj)cum(mj, . . . ,mj︸ ︷︷ ︸
6

)

+56cum(mj,mj,mj)cum(mj, . . . ,mj︸ ︷︷ ︸
5

) + 42cum4(mj,mj,mj,mj)

+90cum2(mj,mj)cum(mj,mj,mj,mj) + 96cum4(mj,mj)

+280cum(mj,mj)cum2(mj,mj,mj)] +O(n−2). (5.31)
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By Lemma 5.2, we have

cum(mj, . . . ,mj︸ ︷︷ ︸
8

) = c2, . . . , 2︸ ︷︷ ︸
8

g(ωj, θ)
8 +O(n−1),

28cum(mj,mj)cum(mj, . . . ,mj︸ ︷︷ ︸
6

) = 28c2, . . . , 2︸ ︷︷ ︸
6

g(ωj, θ)
8 +O(n−1),

56cum(mj,mj,mj)cum(mj, . . . ,mj︸ ︷︷ ︸
5

) = 112c2, . . . , 2︸ ︷︷ ︸
5

g(ωj, θ)
8 +O(n−1),

42cum4(mj,mj,mj,mj) = 1512g(ωj, θ)
8 +O(n−1),

90cum2(mj,mj)cum(mj,mj,mj,mj) = 540g(ωj, θ)
8 +O(n−1),

and finally

280cum(mj,mj)cum2(mj,mj,mj) = 1120g(ωj, θ)
8 +O(n−1).

Substituting the above formulas into (5.31), it follows that

1

n2

n∑
j=1

Var(m4
j)

=
1

2πn
{c2, . . . , 2︸ ︷︷ ︸

8

+ 28c2, . . . , 2︸ ︷︷ ︸
6

+ 112c2, . . . , 2︸ ︷︷ ︸
5

+ 3268}
∫

Π

g(ω, θ)8 dω +O(n−2).

With a similar but more tedious argument of cumulants, we have

1

n2

∑
j 6=k

Cov(m4
j ,m

4
k)

=
1

n2

∑
j 6=k

[cum(mj,mj,mj,mj,mk,mk,mk,mk)

+6cum(mj,mj)cum(mj,mj,mk,mk,mk,mk)

+6cum(mk,mk)cum(mj,mj,mj,mj,mk,mk)

+4cum(mj,mj,mj)cum(mj,mk,mk,mk,mk)

+4cum(mk,mk,mk)cum(mj,mj,mj,mj,mk)

+36cum(mj,mj)cum(mk,mk)cum(mj,mj,mk,mk)

+24cum(mj,mj)cum(mk,mk,mk)cum(mj,mj,mk)

+24cum(mk,mk)cum(mj,mj,mj)cum(mj,mk,mk)] +O(n−2).



www.manaraa.com

Chapter 5 Bartlett Correction for EL with non-Gaussian Short-Memory Time Series 94

Because the respective terms in the above expansion satisfy

1

n2

∑
j 6=k

cum(mj,mj,mj,mj,mk,mk,mk,mk) = c2, . . . , 2︸ ︷︷ ︸
6

,4

κε,4
nσ4

ε

λ2
4

81
+O(n−2),

6

n2

∑
j 6=k

cum(mj,mj)cum(mj,mj,mk,mk,mk,mk) = c2,2,2,2,4
κε,4
nσ4

ε

2λ2
4

27
+O(n−2),

4

n2

∑
j 6=k

cum(mj,mj,mj)cum(mj,mk,mk,mk,mk) = c2,2,2,4
κε,4
nσ4

ε

8λ2
4

81
+O(n−2),

36

n2

∑
j 6=k

cum(mj,mj)cum(mk,mk)cum(mj,mj,mk,mk) =
16λ2

4

9

κε,4
nσ4

ε

+O(n−2),

it follows that

sup
θ∈Θ

∣∣∣∣∣ 1n∑
j 6=k

cum(m4
j ,m

4
k)−

k̃4κε,4λ
2
4

81σ4
ε

∣∣∣∣∣ = O
(
n−1
)
,

where k̃4 = c2,2,2,2,2,2,4 + 12c2,2,2,2,4 + 16c2,2,2,4 + 336. Therefore, using Cheby-

shev’s inequality, ∆4 = Op(n
−1/2). �

Proof of Lemma 5.3:

Based on the formula of SR in (5.4), we obtain the first-order cumulant

expansion

cum(R1+R2+R3) =
1

n

1

λ
1/2
2

1

2π

∫
Π

bI(ω)g(ω, θ)f(ω, θ)−1 dω− 1

n

2

3

λ3

λ
3/2
2

+O(n−2).

Note that

cum(R1 +R2 +R3, R1 +R2 +R3) = cum(R1, R1) + 2cum(R1, R2) + 2cum(R1, R3)

+cum(R2, R2) +O(n−3). (5.32)

Similar to the calculations of λr and ∆r, we have

cum(R1, R1) = 1 +O(n−3),

cum(R1, R2) =
1

n2

λ2
3

λ3
2

− 1

n2

9

2

λ4

λ2
2

− 1

n2

κε,4
σ4
ε

+O(n−3),

cum(R1, R3) =
1

n2

7

12

λ4

λ2
2

+
1

n2

275

72

λ2
3

λ3
2

+
1

n2

3

8

κε,4
σ4
ε

+O(n−3),
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and

cum(R2, R2) =
1

n2

2

9

λ2
3

λ3
2

+
1

n2

1

9

λ2λ4

λ2
3

+
1

n2

1

8

κε,4
σ4
ε

+O(n−3),

Substituting these equations into (5.32), we have

cum(R1 +R2 +R3, R1 +R2 +R3) =
1

n
+
k2,2

n2
+O(n−3),

where by the formulas (5.25), (5.26) and (5.19) for λr defined in Section 3.2,

r = 2, 3, 4,

k2,2 =
λ3

3πλ3
2

∫
Π

g(ω, θ)3 dω − 1

2πλ2
2

∫
Π

g(ω, θ)4 dω

+
13

2π2λ2
3

∫∫
Π2

g(ω, θ)2g(λ, θ)4 dω dλ

+
1

π2λ3
2

(∫
Π

g(ω, θ)3 dω

)2

− 17λ3

6π2λ4
2

∫∫
Π2

g(ω, θ)2g(λ, θ)3 dω dλ

+

{
− κε,4

2π2σ4
ελ

2
2

+
37λ2

3

18π2λ5
2

− 3λ4

8π2λ4
2

}(∫
Π

g(ω, θ)2 dω

)2

+
7κε,4

32π3σ4
ελ

3
2

(∫
Π

g(ω, θ)2 dω

)3

,

= 4
λ2

3

λ3
2

− 29

18

λ4

λ2
2

+
26

9

λ2λ4

λ2
3

− κε,4
σ4
ε

.

Using the same higher-order expansion formula of the signed root empirical

log-likelihood ratio in Chapter 4, we have

cum(SR, SR, SR) = cum(R1, R1, R1) + 3cum(R1, R1, R2) +O(n−3). (5.33)

For the two terms in (5.33),

cum(R1, R1, R1) =
1

n2

λ3

λ
3/2
2

+O(n−3),

3cum(R1, R1, R2) =
1

n2

λ3

λ
7/2
2

cum(m,m,m2)− 1

n2

3

2

1

λ
5/2
2

cum(m,m,m∆2)

=
1

n2

{
2λ3

λ
3/2
2

− 3λ3

λ
3/2
2

}
+O(n−3) = − 1

n2

λ3

λ
3/2
2

+O(n−3).



www.manaraa.com

Chapter 5 Bartlett Correction for EL with non-Gaussian Short-Memory Time Series 96

It follows that

cum(SR, SR, SR) =
1

n2

λ3

λ
3/2
2

− 1

n2

λ3

λ
3/2
2

+O(n−3) = O(n−3).

Similarly,

cum(SR, SR, SR, SR) = cum(R1, R1, R1, R1) + 4cum(R1, R1, R1, R2)

+4cum(R1, R1, R1, R3) + 6cum(R1, R1, R2, R2)

+O(n−4), (5.34)

and for the four terms in (5.34), we have

cum(R1, R1, R1, R1) =
1

n3

2

3

λ4

λ2
2

+
1

n3

12κε,4
σ4
ε

+O(n−4),

cum(R1, R1, R1, R2) =
1

3

λ3

λ4
2

cum(m,m,m,m2)− 1

2

1

λ3
2

cum(m,m,m,m∆2)

=
1

n3

λ2
3

2λ3
2

− 1

n3

4

3

λ4

λ2
2

− 1

n3

6κε,4
σ4
ε

+O(n−4),

cum(R1, R1, R1, R3) =
3

8

1

λ4
2

cum(m,m,m,m∆2) +
1

3

1

λ4
2

cum(m,m,m,m2∆3)

−5

6

λ3

λ5
2

cum(m,m,m,m2∆2)

+

{
4

9

λ2
3

λ6
2

− 1

4

λ4

λ5
2

}
cum(m,m,m,m3)

= − 1

n3

1

12

λ2
3

λ3
2

+
1

n3

1

2

λ4

λ2
2

+O(n−4),

and

cum(R1, R1, R2, R2) =
1

9

λ2
3

λ6
2

cum(m,m,m2,m2)− 1

3

λ3

λ5
2

cum(m,m,m2,m∆2)

+
1

4

1

λ4
2

cum(m,m,m∆2,m∆2)

= − 1

n3

5

18

λ2
3

λ3
2

+
1

n3

4

9

λ4

λ2
2

+
1

n3

2κε,4
σ4
ε

+O(n−4).
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Substituting the above expansion multiplied by their coefficients into (5.34),

it follows that

cum(SR, SR, SR, SR) =
1

n3

{
2

3

λ4

λ2
2

+
12κε,4
σ4
ε

− 16

3

λ4

λ2
2

− 24κε,4
σ4
ε

+ 2
λ2

3

λ3
2

− 1

3

λ2
3

λ3
2

+2
λ4

λ2
2

− 5

3

λ2
3

λ3
2

+
8

3

λ4

λ2
2

+
12κε,4
σ4
ε

}
+O(n−4) = O(n−4).

�



www.manaraa.com

Chapter 6

Conclusions and Further

Research

6.1 Conclusions

Empirical likelihood (EL) is a nonparametric likelihood method, with a key

property of “self-studentization”, meaning that it automatically constructs

confidence regions based on the asymptotic chi-squared limiting distribution

without assuming any joint distribution of the data. EL has been shown to

have many advantages over other methods (see, for example, Owen (2001) and

Kitamura (2006)). Among these benefits, Bartlett correction is one attractive

property, as it allows the construction of the confidence region with a smaller

coverage error.

In this thesis, we discuss the Bartlett correction of EL for time series with

Whittle-type periodogram-based score functions. By establishing the valid

Edgeworth expansion of the signed root empirical log-likelihood ratio statistic

with an irregular form, we proved that the coverage error of periodogram-based

EL for Gaussian LMTS can be reduced from order O(log n6/n) to O(log n3/n),
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instead of from O(n−1) to O(n−2) in the i.i.d. setting using the Bartlett cor-

rection technique.

We also extend Bartlett correction for EL to non-Gaussian time series data.

By tedious calculation, we find that the non-negligible higher-order cumulants

can be removed in the higher-order cumulants of the signed root empirical log-

likelihood ratio statistic for non-Gaussian short-memory time series (SMTS).

Therefore, the valid Edgeworth expansion can also be established as a power

series of n−1/2. Based on the Edgeworth expansion, we prove the Bartlett

correctability of EL for non-Gaussian SMTS. The coverage error is reduced

from order O(n−1) to order O(n−2).

6.2 Further Research

These results are obtained only for one-dimensional data with scalar parame-

ters. Future work could extend the Bartlett corretability of EL to inferences

made from multivariate observations with multivariate parameters. However,

this work requires the formidable calculation of asymptotic expansion involving

extremely complex tensors.

In our work, we only consider the Bartlett correction for non-Gaussian

time series with finite moment conditions. However, as demonstrated by Fama

(1965) and Mandelbrot (1963), asset returns in financial markets always exhibit

heavy-tailed phenomena. In this case, the moment condition fails and we may

need to adjust the log-EL ratio to admit a proper “self-studentization”. It may

be possible that the log-EL ratio function does not have a chi-squared limit,

as for unstable AR(p) models in Chuang and Chan (2002). Furthermore, it is

of great interest to develop the EL method and Bartlett correction for heavy-

tailed data.

Another extension of EL method is to consider other dependence structures,



www.manaraa.com

Chapter 6 Conclusions and Further Research 100

such as spatial dependence. One main theorectical difference between spatial

and time series data is that the former may be irregularly spaced and they

may need to consider various sampling schemes, such as stochastic spatial

locations sampling and infill sampling. It is still an open question whether the

EL method admits “self-studentization” under a different sampling scheme.
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